I Schrodinger Equation from Ritz Variational Method

Samama Fahim
Messages
52
Reaction score
4
ritz variationalk principle.JPG

(This is from W. Greiner Quantum Mechanics, p. 293 from the topic of Ritz Variational Method)

1) Are ##\frac{\delta}{\delta \psi^{*}}## derivatives in equations 11.35a and 11.35b? If this is so, we can differentiate under the integral sign to get ##\int d^3x (\hat{H}\psi)## in equation 11.35a and ##\int d^3x \psi## in 11.35b, but why would ##\int d^3x (\hat{H}\psi)## be equal to just ##\hat{H}\psi## and ##\int d^3x \psi## to just ##\psi##?

2) Moreover, we replace ##\delta \bra{\psi}\hat{H}\ket{\psi}## in 11.34 with ##\hat{H}\psi## and ##\delta \bra{\psi}\ket{\psi}## with ##\psi## resulting in the equation at the bottom. Why is that? Is it that ##\delta (\psi^{*}\hat{H}\psi) = \hat{H}\psi \delta \psi^{*}## because we are looking at variation in ##\psi^{*}## and so we can take ##\hat{H} \psi## out?
 
Physics news on Phys.org
1) Those are functional derivatives, not regular derivatives.

2) The functional derivative wrt ##\psi^*## does not vary ##\psi## or ##H##.
 
  • Like
Likes protonsarecool, Samama Fahim and vanhees71
I am not sure if this falls under classical physics or quantum physics or somewhere else (so feel free to put it in the right section), but is there any micro state of the universe one can think of which if evolved under the current laws of nature, inevitably results in outcomes such as a table levitating? That example is just a random one I decided to choose but I'm really asking about any event that would seem like a "miracle" to the ordinary person (i.e. any event that doesn't seem to...
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Back
Top