Undergrad Schrodinger Equation from Ritz Variational Method

Click For Summary
The discussion clarifies that the derivatives in equations 11.35a and 11.35b are functional derivatives, allowing differentiation under the integral sign. This leads to the simplification where ##\int d^3x (\hat{H}\psi)## is treated as ##\hat{H}\psi## and ##\int d^3x \psi## as ##\psi##. Additionally, the replacement of ##\delta \bra{\psi}\hat{H}\ket{\psi}## with ##\hat{H}\psi## and ##\delta \bra{\psi}\ket{\psi}## with ##\psi## is justified because the functional derivative with respect to ##\psi^{*}## does not affect ##\psi## or ##\hat{H}##. This understanding is crucial for applying the Ritz Variational Method effectively in quantum mechanics. The conversation emphasizes the importance of recognizing the nature of functional derivatives in these equations.
Samama Fahim
Messages
52
Reaction score
4
ritz variationalk principle.JPG

(This is from W. Greiner Quantum Mechanics, p. 293 from the topic of Ritz Variational Method)

1) Are ##\frac{\delta}{\delta \psi^{*}}## derivatives in equations 11.35a and 11.35b? If this is so, we can differentiate under the integral sign to get ##\int d^3x (\hat{H}\psi)## in equation 11.35a and ##\int d^3x \psi## in 11.35b, but why would ##\int d^3x (\hat{H}\psi)## be equal to just ##\hat{H}\psi## and ##\int d^3x \psi## to just ##\psi##?

2) Moreover, we replace ##\delta \bra{\psi}\hat{H}\ket{\psi}## in 11.34 with ##\hat{H}\psi## and ##\delta \bra{\psi}\ket{\psi}## with ##\psi## resulting in the equation at the bottom. Why is that? Is it that ##\delta (\psi^{*}\hat{H}\psi) = \hat{H}\psi \delta \psi^{*}## because we are looking at variation in ##\psi^{*}## and so we can take ##\hat{H} \psi## out?
 
Physics news on Phys.org
1) Those are functional derivatives, not regular derivatives.

2) The functional derivative wrt ##\psi^*## does not vary ##\psi## or ##H##.
 
  • Like
Likes protonsarecool, Samama Fahim and vanhees71
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA

Similar threads

  • · Replies 0 ·
Replies
0
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 31 ·
2
Replies
31
Views
5K