I Schwartz derivation of the Feynman rules for scalar fields

eoghan
Messages
201
Reaction score
7
TL;DR Summary
Justify why the fields die off at infinite time, and why the interaction vacuum can be exchanged with the free vacuum.
Hi everyone,

In his book "Quantum field theory and the standard model", Schwartz derives the position-space Feynman rules starting from the Schwinger-Dyson formula (section 7.1.1). I have two questions about his derivation.

1) As a first step, he rewrites the correlation function as
$$
\langle\Omega\vert\phi_1\phi_2\vert\Omega\rangle = i\int d^4x (\Box_xD_{x1})\langle\Omega\vert\phi_x\phi_2\vert\Omega\rangle = i\int d^4x D_{x1}\Box_x\langle\Omega\vert\phi_x\phi_2\vert\Omega\rangle
$$
where ##D_{x1}## is the Feynman propagator, such that ##\Box_xD_{x1}=-i\delta_{x1}##
In the last step, he integrated by parts supposing that the term ##D_{x1}\langle\Omega\vert\phi_x\phi_2\vert\Omega\rangle## disappears on the boundary of the integration domain.

However, previously while deriving the LSZ formula (section 6.1, just before Eq 6.9), he notes "we will obviously have to be careful about boundary conditions at ##t=\pm\infty##. However, we can safely assume that the fields die off at ##\vec x=\pm\infty##, allowing us to integrate by parts in ##\vec x##". Shouldn't this apply also for the present derivation? I mean, how can we justify that ##D_{x1}\langle\Omega\vert\phi_x\phi_2\vert\Omega\rangle## dies off also at the time boundary?

2) In computing the two points correlation function in the presence of interaction, Schwartz notices that ##\langle\Omega\vert\phi_1\phi_2\vert\Omega\rangle## contains a term ##g^2\langle\Omega\vert\phi^2_x\phi^2_y\vert\Omega\rangle## (Eq 7.19). Since we are interested only in order ##g^2##, he says that we should use the free field result for ##\langle\Omega\vert\phi^2_x\phi^2_y\vert\Omega\rangle##. This makes sense, but in the free field, the empty state is ##\vert 0\rangle\neq \vert\Omega\rangle##. And indeed, later on he shows that between ##\vert\Omega\rangle## and ##\vert 0\rangle## there is a factor proportional to the exponential of the interaction potential (Eq 7.53 and following).

Of course, his strategy of considering the interacting and free vacuum equal is correct, because the final result is correct. But I do not see how it can be justified.
 
Physics news on Phys.org
Shouldn't we have to take into account the exponentials in Eq 7.19? Or am I missing something?Thank you in advance!
 
We often see discussions about what QM and QFT mean, but hardly anything on just how fundamental they are to much of physics. To rectify that, see the following; https://www.cambridge.org/engage/api-gateway/coe/assets/orp/resource/item/66a6a6005101a2ffa86cdd48/original/a-derivation-of-maxwell-s-equations-from-first-principles.pdf 'Somewhat magically, if one then applies local gauge invariance to the Dirac Lagrangian, a field appears, and from this field it is possible to derive Maxwell’s...
I read Hanbury Brown and Twiss's experiment is using one beam but split into two to test their correlation. It said the traditional correlation test were using two beams........ This confused me, sorry. All the correlation tests I learnt such as Stern-Gerlash are using one beam? (Sorry if I am wrong) I was also told traditional interferometers are concerning about amplitude but Hanbury Brown and Twiss were concerning about intensity? Isn't the square of amplitude is the intensity? Please...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Back
Top