I Schwinger-Dyson equations derivation

  • I
  • Thread starter Thread starter simonjech
  • Start date Start date
  • Tags Tags
    Derivation
simonjech
Gold Member
Messages
12
Reaction score
5
This is the part of Schwinger-Dyson equations derivation. I did not understand how can we obtain the commutator in the last line of the picture. I understand why the delta functions appeared from Heaviside functions but there is no minus sign in any term so how can we get the commutator? Anticommutator would make more sence for me.
Screenshot_20230305_212957_Drive.jpg
 
Physics news on Phys.org
Write down ##\theta (-t)## in terms of ##\theta (t)##. Drawing the graph of ##\theta (-t)## helps.
 
Last edited:
  • Like
Likes vanhees71, simonjech and malawi_glenn
Or just use the chain rule for differentiation
 
I think that i figured it out. The problem was that I did not realized that
Screenshot_20230306_154107_Math Editor.jpg
.
 
  • Like
Likes vanhees71, malawi_glenn, julian and 1 other person
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Is it possible, and fruitful, to use certain conceptual and technical tools from effective field theory (coarse-graining/integrating-out, power-counting, matching, RG) to think about the relationship between the fundamental (quantum) and the emergent (classical), both to account for the quasi-autonomy of the classical level and to quantify residual quantum corrections? By “emergent,” I mean the following: after integrating out fast/irrelevant quantum degrees of freedom (high-energy modes...
Back
Top