Second Derivative Test for Local Extrema

22990atinesh
Messages
143
Reaction score
1
Suppose ##f^{\prime\prime}## is continuous on an open interval that contains x = c

1. If ##f^{\prime}(c)=0## and ##f^{\prime\prime}(c)<0##, then ##f## has local maximum at x = c.
2. If ##f^{\prime}(c)=0## and ##f^{\prime\prime}(c)>0##, then ##f## has local minimum at x = c.
3. If ##f^{\prime}(c)=0## and ##f^{\prime\prime}(c)=0##, then the test fails. The function ##f## may have a local maximum, a local minimum, or neither.

I've a little doubt in point 3. I've come up with only 1 example for the possibility when

##f^{\prime}(c)=0##, ##f^{\prime\prime}(c)=0## and ##f## has neither local maximum or local minimum.

Ex: ##f(x)=x^3##

image.jpg


Please give examples for other two possibilities when

##f^{\prime}(c)=0##, ##f^{\prime\prime}(c)=0## and f has local maximum

##f^{\prime}(c)=0## , ##f^{\prime\prime}(c)=0## and f has local minimum
 
Last edited by a moderator:
Physics news on Phys.org
For the first, f(x)= 1- x^4. For the second, f(x)= x^4.
 
  • Like
Likes 1 person
HallsofIvy said:
For the first, f(x)= 1- x^4. For the second, f(x)= x^4.

Thanx I get it
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K