- #1

- 36

- 0

Is there a common way to write a fermionic Fock space (finite dimensional) as a tensor product such that it is possible to do a partial trace over one particle type? Sorry, if this is an obvious question, but I just can't see it.

Thanks!!

- Thread starter ledamage
- Start date

- #1

- 36

- 0

Is there a common way to write a fermionic Fock space (finite dimensional) as a tensor product such that it is possible to do a partial trace over one particle type? Sorry, if this is an obvious question, but I just can't see it.

Thanks!!

- #2

- 36

- 0

[tex]|\psi\rangle = |n_1\rangle \otimes |n_2\rangle \otimes |n_3\rangle \otimes \hdots[/tex]

where [itex]n_1=0,1,2,3,\hdots[/itex] etc., right?

Since creators and annihilators commute, it is possible to write an operator, e.g., [itex]Q=a_1^\dagger a_3^\dagger a_2 a_1 a_2^\dagger[/itex] as [itex]Q=a_1^\dagger a_1 \otimes a_2 a_2^\dagger \otimes a_3^\dagger \otimes 1 \otimes 1 \otimes \hdots[/itex] as long as the ordering within the same species is maintained, right?

This makes it particularly easy to take partial traces over modes, just by taking the expectation value of, say, [itex]|n_2\rangle[/itex] and taking the sum [itex]\sum_{n_2=0}^\infty[/itex]. In fermionic Fock space, however, I always get minus signs when commuting since even different species don't commute trivially, so it seems suspicious to do something like above. Is there a common treatment for this? How do I take a partial trace over, say, one species in a fermionic Fock space?

- #3

- 85

- 0

No, not every state is of this form. Firstly, a state vector [itex]|\psi\rangle[/itex] for one particle species, in general, is a superposition of number eigenstates [itex]|n\rangle[/itex], where [itex]n=0,1,2,3,\hdots[/itex]. Secondly, it's possible to entangle particles of different species; so you need to include finite linear sums of states of this form. (That is, the states you mention are a basis for the state space: state space is the closure of the set of finite linear sums of basis states. Reed and Simon, Methods of Modern Math Physics is a great reference.)Let me refine the question. In bosonic Fock space, due to the commutation relations of the creation and annihilation operators, it is possible to write every state vector as a tensor product

[tex]|\psi\rangle = |n_1\rangle \otimes |n_2\rangle \otimes |n_3\rangle \otimes \hdots[/tex]

where [itex]n_1=0,1,2,3,\hdots[/itex] etc., right?

Yes, I think so.Since creators and annihilators commute, it is possible to write an operator, e.g., [itex]Q=a_1^\dagger a_3^\dagger a_2 a_1 a_2^\dagger[/itex] as [itex]Q=a_1^\dagger a_1 \otimes a_2 a_2^\dagger \otimes a_3^\dagger \otimes 1 \otimes 1 \otimes \hdots[/itex] as long as the ordering within the same species is maintained, right?

Good question. I'm not sure. I never really thought about it before but my first inclination was that creation/annihilation operators of different species commute, even for fermions.This makes it particularly easy to take partial traces over modes, just by taking the expectation value of, say, [itex]|n_2\rangle[/itex] and taking the sum [itex]\sum_{n_2=0}^\infty[/itex]. In fermionic Fock space, however, I always get minus signs when commuting since even different species don't commute trivially, so it seems suspicious to do something like above. Is there a common treatment for this? How do I take a partial trace over, say, one species in a fermionic Fock space?

- #4

- 36

- 0

Oh sure! Actually, this is what I meant - aNo, not every state is of this form. Firstly, a state vector [itex]|\psi\rangle[/itex] for one particle species, in general, is a superposition of number eigenstates [itex]|n\rangle[/itex], where [itex]n=0,1,2,3,\hdots[/itex]. Secondly, it's possible to entangle particles of different species; so you need to include finite linear sums of states of this form. (That is, the states you mention are a basis for the state space: state space is the closure of the set of finite linear sums of basis states. Reed and Simon, Methods of Modern Math Physics is a great reference.)

Unfortunately, I noted that I implicitly assumed this after a quite tedious calculation. But we have [itex]\{ a_i^{(\dagger)},a_j^{(\dagger)} \} = 0[/itex], don't we? Indeed, when expressing basis states of the fermionic Fock space in terms of occupation numbers, a determined order of the creators has to be specified, e.g.,Good question. I'm not sure. I never really thought about it before but my first inclination was that creation/annihilation operators of different species commute, even for fermions.

[tex]|n_1, n_2, \hdots \rangle := (a_1^\dagger)^{n_1} (a_2^\dagger)^{n_2} \hdots |0\rangle \neq (a_2^\dagger)^{n_1} (a_1^\dagger)^{n_2} \hdots |0\rangle \ . [/tex]

(Actually, for three of four cases, the [itex]\neq[/itex] is a [itex]=[/itex], but not in general.) In another thread, I found an interesting suggestion: Write the basis states of the fermionic Fock space as

[tex]|\psi\rangle = |n_1\rangle \otimes |n_2\rangle \otimes \hdots \ , \qquad (n_i=0,1)[/tex]

and represent the operators by

[tex]a_1^{(\dagger)} = a_1^{(\dagger)} \otimes 1 \otimes 1 \otimes 1 \otimes \hdots ,[/tex]

[tex]a_2^{(\dagger)} = (-1)^{a_1^\dagger a_1} \otimes a_2^{(\dagger)} \otimes 1 \otimes 1 \otimes \hdots ,[/tex]

[tex]a_3^{(\dagger)} = (-1)^{a_1^\dagger a_1} \otimes (-1)^{a_2^\dagger a_2} \otimes a_3^{(\dagger)} \otimes 1 \otimes \hdots [/tex]

etc.

The [itex](-1)^{a_i^\dagger a_i}[/itex] stands for [itex](1-2 a_i^\dagger a_i)[/itex] and accounts for the additional minus signs due to anticommuting when necessary.

- Replies
- 2

- Views
- 5K

- Last Post

- Replies
- 1

- Views
- 1K

- Last Post

- Replies
- 4

- Views
- 1K

- Last Post

- Replies
- 3

- Views
- 2K

- Last Post

- Replies
- 8

- Views
- 3K

- Last Post

- Replies
- 23

- Views
- 4K

- Last Post

- Replies
- 9

- Views
- 2K

- Last Post

- Replies
- 8

- Views
- 2K

- Last Post

- Replies
- 6

- Views
- 2K

- Last Post

- Replies
- 5

- Views
- 2K