MHB Securing n Sheets with Thumbtacks: Can You Prove My Conjecture?”

  • Thread starter Thread starter mrtwhs
  • Start date Start date
  • Tags Tags
    Conjecture
mrtwhs
Messages
47
Reaction score
0
You have an infinite supply of square sheets of paper. You are going to secure these sheets on an infinitely large bulletin board by using thumbtacks. You must secure all four corners of each sheet however you may slightly overlap the sheets so that one thumbtack could secure up to four sheets at once. Under these assumptions, one sheet requires 4 tacks, 2 sheets require 6 tacks, 3 sheets require 8 tacks, etc.

What is the minimum number of thumbtacks needed to secure $$n$$ sheets?

I have a conjecture for a formula but have no clue how to prove it.
 
Mathematics news on Phys.org
Here is my conjecture for the number of thumbtacks needed for $$n$$ sheets of paper.

$$T(n) = \lceil(1+\sqrt{n})^2 \rceil$$ where the upper brackets represent the ceiling function.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top