ZaidAlyafey said:
How to prove the following
$$\lim_{q \to 1}\frac{(a;q)_{\infty}}{(aq^x;q)_{\infty}}= (1-a)^x $$
It is kind of easy to prove it for $x\in \mathbb{Z}^+$
Ok , I think I got it , this is a simple consequence of the q-binomial theorem
Consider the following
$${}_1\phi_0 (a;- ;q,z) = \sum_{k\geq 0}\frac{(a;q)_k}{(q;q)_k}z^k=\frac{(az;q)_{\infty}}{(z;q)_{\infty}}$$ (1)
In (1) let $a = q^{x}$ and $z = a$
$${}_1\phi_0 (q^x;- ;q,a) = \sum_{k\geq 0}\frac{(q^x;q)_k}{(q;q)_k}a^k=\frac{(aq^{x};q)_ {\infty} }{(a;q)_{\infty}}$$
Hence we have
$$\frac{(aq^{x};q)_{\infty}}{(a;q)_{\infty}}= \sum_{k\geq 0}\frac{(q^x;q)_k}{(q;q)_k}a^k$$
Now consider the limit
$$ \lim_{q \to 1}\frac{(aq^{x};q)_{\infty}}{(a;q)_{\infty}}= \lim_{q \to 1} \sum_{k\geq 0}\frac{(q^x;q)_k}{(q;q)_k}a^k$$(2)
Suppose that $$|a|<1$$ and [Math]|q|<1[/Math] so the sum is uniformly convergent on any sub-disk . So we have to approach $1$ from the left to stay in the disk !
The idea is use the L'Hospitale rule
$$\lim_{q \to 1^-}\frac{(q^x;q)_k}{(q;q)_k} = \lim_{q \to 1^-} \frac{(1-q^x)\cdot (1-q^{x+1}) \cdot(1-q^{x+2}) \cdots (1-q^{x+k-1}) }{(1-q)\cdot(1-q^2)\cdot(1-q^3) \cdots(1-q^k)}$$
which can be written as
$$\lim_{q \to 1^-}\frac{(q^x;q)_k}{(q;q)_k} = \lim_{q \to 1^-} \frac{(1-q^x)}{1-q}\cdot \lim_{q \to 1^-}\frac{(1-q^{x+1})}{1-q^2} \cdot \lim_{q \to 1} \frac{(1-q^{x+2})}{1-q^3} \cdots \lim_{q \to 1^-} \frac{(1-q^{x+k-1}) }{(1-q^k)}$$
$$ \lim_{q \to 1^-}\frac{(q^x;q)_k}{(q;q)_k} = \frac{x (x+1)(x+2)\cdots (x+k-1)}{1\cdot 2 \cdot 3 \cdots k} = \frac{(x)_k}{k!} $$
Substitute in (2)
$$ \lim_{q \to 1^-}\frac{(aq^{x};q)_{\infty}}{(a;q)_{\infty}}= \sum_{k\geq 0}\frac{(x)_k}{k!}a^k$$
The sum on the right is well-know $(1-x)^{-a}$
$$ \lim_{q \to 1^-}\frac{(aq^{x};q)_{\infty}}{(a;q)_{\infty}}= (1-x)^{-a} $$ (3)
From (3) we conclude that
$$ \lim_{q \to 1^-}\frac{(a;q)_{\infty}}{ (aq^{x};q)_{\infty}}= (1-x)^{a} $$