Sequence of Interpolating Values

  • Context: MHB 
  • Thread starter Thread starter Hero1
  • Start date Start date
  • Tags Tags
    Sequence
Click For Summary

Discussion Overview

The discussion revolves around constructing a sequence of interpolating values \(y_n\) for the function \(f(x) = \frac{1}{1+x^2}\) at the point \(f(1+\sqrt{10})\) using polynomial interpolation. Participants explore the convergence of this sequence as \(n\) varies from 1 to 10, considering the implications of using equidistant points for interpolation.

Discussion Character

  • Exploratory
  • Technical explanation
  • Debate/contested

Main Points Raised

  • Some participants inquire whether separate interpolating polynomials need to be constructed for each value of \(n\) from 1 to 10.
  • One participant references Runge's phenomenon, suggesting that the use of equidistant points in polynomial interpolation can lead to divergence, particularly at the edges of the interval.
  • Another participant discusses the error function associated with polynomial interpolation and its dependence on the behavior of the function at the edges of the interval.
  • There is a suggestion to avoid Runge's phenomenon by using Chebyshev-Gauss-Lobatto points for interpolation instead of equidistant points, citing improved performance.

Areas of Agreement / Disagreement

Participants express differing views on the implications of using equidistant points for interpolation, with some acknowledging the potential for divergence while others propose alternative methods. No consensus is reached regarding the best approach to take.

Contextual Notes

The discussion highlights limitations related to the choice of interpolation points and the potential for divergence, but does not resolve the mathematical implications or provide a definitive solution.

Hero1
Messages
9
Reaction score
0
Construct a sequence of interpolating values \(y_n\) to \(f(1 +\sqrt{10})\), where \(f(x)= \frac{1}{1+x^2 }\) for \(−5≤x≤5\), as follows: For each \(n = 1,2,…,10\), let \(h =\frac{10}{n}\) and \(y_n= P_n (1+\sqrt{10})\), where \(P_n(x)\) is the interpolating polynomial for \(f(x)\) at nodes \(x_0^n,x_1^n,…,x_n^n=−5+jh\), for each \(j=0,1,2,…,n\). Does the sequence \({y_n }\) appear to converge to \(f(1+\sqrt{10} )\)?
 
Last edited:
Physics news on Phys.org
Hero said:
Construct a sequence of interpolating values \(y_n\) to \(f(1 +\sqrt{10})\), where \(f(x)= \frac{1}{1+x^2 }\) for \(−5≤x≤5\), as follows: For each \(n = 1,2,…,10\), let \(h =\frac{10}{n}\) and \(y_n= P_n (1+\sqrt{10})\), where \(P_n(x)\) is the interpolating polynomial for \(f(x)\) at nodes \(x_0^n,x_1^n,…,x_n^n=−5+jh\), for each \(j=0,1,2,…,n\). Does the sequence \({y_n }\) appear to converge to \(f(1+\sqrt{10} )\)?

Hi Hero, :)

I am not very clear about your question. Do you have to construct interpolating polynomials for each, \(\frac{10}{n}\) where \(n=1,2,\cdots,10\) separately?

Kind Regards,
Sudharaka.
 
Hero said:
Construct a sequence of interpolating values \(y_n\) to \(f(1 +\sqrt{10})\), where \(f(x)= \frac{1}{1+x^2 }\) for \(−5≤x≤5\), as follows: For each \(n = 1,2,…,10\), let \(h =\frac{10}{n}\) and \(y_n= P_n (1+\sqrt{10})\), where \(P_n(x)\) is the interpolating polynomial for \(f(x)\) at nodes \(x_0^n,x_1^n,…,x_n^n=−5+jh\), for each \(j=0,1,2,…,n\). Does the sequence \({y_n }\) appear to converge to \(f(1+\sqrt{10} )\)?

That is a classical 'example' of 'divergence' of a interpolating polynomial with equidistant points that was 'discovered' by the German Mathematician C.D.T. Runge. See...

Runge's phenomenon - Wikipedia, the free encyclopedia

The 'error function' is given by...

$\displaystyle f(x)-p(x)= \frac{f^{(n+1)}(\xi)}{(n+1)!}\ \prod_{k=1}^{n+1} (x-x_{k})$ (1)

... where $\xi$ is in the definition interval of f(*). In general is the behavior of the error at the edges of interval that causes divergence...

Kind regards

$\chi$ $\sigma$
 
chisigma said:
That is a classical 'example' of 'divergence' of a interpolating polynomial with equidistant points that was 'discovered' by the German Mathematician C.D.T. Runge. See...

Runge's phenomenon - Wikipedia, the free encyclopedia

The 'error function' is given by...

$\displaystyle f(x)-p(x)= \frac{f^{(n+1)}(\xi)}{(n+1)!}\ \prod_{k=1}^{n+1} (x-x_{k})$ (1)

... where $\xi$ is in the definition interval of f(*). In general is the behavior of the error at the edges of interval that causes divergence...

Kind regards

$\chi$ $\sigma$

A good method to avoid the ‘Runde’s phenomenon’is to avoid to use equidistant point and to interpolate in the so called ‘Chebysheff-Gauss-Lobatto’ points given by …

$\displaystyle x_{k}= - \cos \frac{k\ \pi}{n}\,\ k=0,1,…,n$ (1)


For the details see…

http://mathdl.maa.org/images/upload_library/4/vol6/Sarra/Chebyshev.html

... where a very interesting 'animation' at the end of section 5.1 shows the better performance of the CGL points approach respect to the 'spontaneous' equidistant points approach...

Kind regards

$\chi$ $\sigma$
 

Similar threads

  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 18 ·
Replies
18
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K