MHB Series challenge: Evaluate 1/4+4/8+8/12+12/16+....

  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Challenge Series
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Determine the sum:

\[\frac{1}{4!}+\frac{4!}{8!}+\frac{8!}{12!}+\frac{12!}{16!}+...\]
 
Mathematics news on Phys.org
My brain hurts. (Headbang)

-Dan
 
Hint:
One approach would be to rewrite the sum using the integrals:

$$\int_{0}^{1} x^{4k+i}\,dx = \frac{1}{4k+i+1}, \;\;\; i = 0,1,2,3.$$
 
Here´s the suggested solution:

We have,
\[S = \frac{1}{4!}+\frac{4!}{8!}+\frac{8!}{12!}+...=\sum_{k=0}^{\infty}\frac{1}{(4k+1)(4k+2)(4k+3)(4k+4)} \\\\ = \sum_{k=0}^{\infty}\left ( \frac{1}{6(4k+1)}-\frac{1}{2(4k+2)}+\frac{1}{2(4k+3)}-\frac{1}{6(4k+4)}\right )\]

Now, we use the integrals:

\[\int_{0}^{1}x^{4k+i}dx = \frac{1}{4k+1+i},\: \: \: i = 0,1,2,3.\]

\[S = \sum_{k=0}^{\infty}\left ( \frac{1}{6}\int_{0}^{1}x^{4k}dx- \frac{1}{2}\int_{0}^{1}x^{4k+1}dx +\frac{1}{2}\int_{0}^{1}x^{4k+2}dx-\frac{1}{6}\int_{0}^{1}x^{4k+3}dx\right ) \\\\ =\sum_{k=0}^{\infty}\int_{0}^{1}\left ( \frac{1}{6}x^{4k}-\frac{1}{2}x^{4k+1}+\frac{1}{2}x^{4k+2}-\frac{1}{6}x^{4k+3} \right )dx \\\\ =\int_{0}^{1}\sum_{k=0}^{\infty}\left ( \frac{1}{6}x^{4k}-\frac{1}{2}x^{4k+1}+\frac{1}{2}x^{4k+2}-\frac{1}{6}x^{4k+3} \right )dx \\\\ =\frac{1}{6}\int_{0}^{1}\sum_{k=0}^{\infty}x^{4k}\left ( 1-3x+3x^2-x^3 \right )dx \\\\ =\frac{1}{6}\int_{0}^{1}\frac{1}{1-x^4}(1-x)^3dx\\\\=\frac{1}{6}\int_{0}^{1}\frac{(1-x)^2}{(1+x^2)(1+x)}dx \\\\ =\frac{1}{6}\int_{0}^{1}\left ( \frac{2}{1+x}-\frac{x}{1+x^2}-\frac{1}{1+x^2} \right )dx\]

Integrating gives:

\[S =\left [ \frac{1}{3}\ln (1+x)-\frac{1}{12}\ln (1+x^2)-\frac{1}{6}\arctan x \right ]_0^1 \\\\ = \frac{1}{4}\ln 2-\frac{\pi}{24}.\]
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.

Similar threads

Replies
7
Views
2K
Replies
4
Views
2K
Replies
8
Views
2K
Replies
1
Views
1K
Replies
3
Views
3K
Replies
2
Views
2K
Back
Top