MHB Series challenge: Evaluate 1/4+4/8+8/12+12/16+....

  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Challenge Series
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Determine the sum:

\[\frac{1}{4!}+\frac{4!}{8!}+\frac{8!}{12!}+\frac{12!}{16!}+...\]
 
Mathematics news on Phys.org
My brain hurts. (Headbang)

-Dan
 
Hint:
One approach would be to rewrite the sum using the integrals:

$$\int_{0}^{1} x^{4k+i}\,dx = \frac{1}{4k+i+1}, \;\;\; i = 0,1,2,3.$$
 
Here´s the suggested solution:

We have,
\[S = \frac{1}{4!}+\frac{4!}{8!}+\frac{8!}{12!}+...=\sum_{k=0}^{\infty}\frac{1}{(4k+1)(4k+2)(4k+3)(4k+4)} \\\\ = \sum_{k=0}^{\infty}\left ( \frac{1}{6(4k+1)}-\frac{1}{2(4k+2)}+\frac{1}{2(4k+3)}-\frac{1}{6(4k+4)}\right )\]

Now, we use the integrals:

\[\int_{0}^{1}x^{4k+i}dx = \frac{1}{4k+1+i},\: \: \: i = 0,1,2,3.\]

\[S = \sum_{k=0}^{\infty}\left ( \frac{1}{6}\int_{0}^{1}x^{4k}dx- \frac{1}{2}\int_{0}^{1}x^{4k+1}dx +\frac{1}{2}\int_{0}^{1}x^{4k+2}dx-\frac{1}{6}\int_{0}^{1}x^{4k+3}dx\right ) \\\\ =\sum_{k=0}^{\infty}\int_{0}^{1}\left ( \frac{1}{6}x^{4k}-\frac{1}{2}x^{4k+1}+\frac{1}{2}x^{4k+2}-\frac{1}{6}x^{4k+3} \right )dx \\\\ =\int_{0}^{1}\sum_{k=0}^{\infty}\left ( \frac{1}{6}x^{4k}-\frac{1}{2}x^{4k+1}+\frac{1}{2}x^{4k+2}-\frac{1}{6}x^{4k+3} \right )dx \\\\ =\frac{1}{6}\int_{0}^{1}\sum_{k=0}^{\infty}x^{4k}\left ( 1-3x+3x^2-x^3 \right )dx \\\\ =\frac{1}{6}\int_{0}^{1}\frac{1}{1-x^4}(1-x)^3dx\\\\=\frac{1}{6}\int_{0}^{1}\frac{(1-x)^2}{(1+x^2)(1+x)}dx \\\\ =\frac{1}{6}\int_{0}^{1}\left ( \frac{2}{1+x}-\frac{x}{1+x^2}-\frac{1}{1+x^2} \right )dx\]

Integrating gives:

\[S =\left [ \frac{1}{3}\ln (1+x)-\frac{1}{12}\ln (1+x^2)-\frac{1}{6}\arctan x \right ]_0^1 \\\\ = \frac{1}{4}\ln 2-\frac{\pi}{24}.\]
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
5
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K