MHB Setting up systems of equations

AI Thread Summary
The discussion revolves around a problem involving two individuals, Ann and Betty, and their expenditures. Ann initially has 20 less than Betty, and after spending portions of their money, the remainder of Ann's is 5/6 of Betty's remainder. The key equation derived is 1/4x = 5/6(1/5(x + 20)), leading to confusion about how the term 50/3 appears in the solution. Participants agree on the setup but question the steps leading to that term, suggesting that a correct sequence of operations might clarify the confusion. The consensus is that while the answer is correct, the process leading to it may contain errors.
TracyThomas
Messages
2
Reaction score
0
I have this problem in my book:
Ann had 20(Cash) less than Betty. Ann spent 3/4 of her money, while Betty spent 4/5 of hers. Then Ann's remainder was 5/6 of Betty's remainder. If Ann had x(Cash) originally, form an equation in x and solve it.

And this solution in the answer key:

x=Ann's (Cash) x+20=Betty's (Cash)

Remainder of Ann's money = 1/4x
Remainder of Betty's money = 1/5(x+20)

1/4x = 5/6 (1/5(x + 20))
x/4 = x/6 + 50/3

12(x/4) = 12(x/6) + 12(50/3)
3x = 2x + 40
Survey says:

x = 40

The question is: How did the 50 in 50/3 get there?
(Wondering) (Worried) Can someone please explain that step so both me and my homeschool teacher can understand it?
 
Mathematics news on Phys.org
Re: Ann & Betty got rich $$$--But where did the 50 come from?

TracyThomas said:
I have this problem in my book:
Ann had 20(Cash) less than Betty. Ann spent 3/4 of her money, while Betty spent 4/5 of hers. Then Ann's remainder was 5/6 of Betty's remainder. If Ann had x(Cash) originally, form an equation in x and solve it.

And this solution in the answer key:

x=Ann's (Cash) x+20=Betty's (Cash)

Remainder of Ann's money = 1/4x
Remainder of Betty's money = 1/5(x+20)

1/4x = 5/6 (1/5(x + 20))
x/4 = x/6 + 50/3

I agree with the setup (usually the hard part!) You are right to question this last step, though. I would do this:

x/4 = 5/6 (x/5 + 4)
x/4 = x/6 + 20/6 = x/6 + 10/3
12 (x/4 = x/6 + 10/3)
3x = 2x + 40
x = 40.

I think it's a question of incorrect processes somehow coming to the right answer.

Does this make sense? I'm not sure I understand how the 50 got in there, but perhaps a correct (I hope) sequence of steps will clear things up.

12(x/4) = 12(x/6) + 12(50/3)
3x = 2x + 40
Survey says:

x = 40

The question is: How did the 50 in 50/3 get there?
(Wondering) (Worried) Can someone please explain that step so both me and my homeschool teacher can understand it?
 
Re: Ann & Betty got rich $$$--But where did the 50 come from?

Thanks! I haven't found ANY errors in the Singapore Math textbook answer keys in many years of using the program, but this answer key is written by someone else, I think, so I suppose it could be in error.

Ackbach said:
I agree with the setup (usually the hard part!) You are right to question this last step, though. I would do this:

x/4 = 5/6 (x/5 + 4)
x/4 = x/6 + 20/6 = x/6 + 10/3
12 (x/4 = x/6 + 10/3)
3x = 2x + 40
x = 40.

I think it's a question of incorrect processes somehow coming to the right answer.

Does this make sense? I'm not sure I understand how the 50 got in there, but perhaps a correct (I hope) sequence of steps will clear things up.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Back
Top