Sharing a birthday - what's wrong in my approach?

  • Thread starter Thread starter musicgold
  • Start date Start date
  • Tags Tags
    Approach
Click For Summary
SUMMARY

The discussion centers on the "birthday problem," specifically determining how many people are needed in a group to achieve a 50% probability that at least two individuals share a birthday. The initial assumption was that 20 people would suffice, yielding a 52% probability; however, established mathematical consensus indicates that 23 people are required for this probability. The error in the original approach lies in incorrectly applying the probability of shared birthdays across pairs, rather than calculating the complement of the probability of no shared birthdays.

PREREQUISITES
  • Understanding of basic probability concepts
  • Familiarity with combinatorial mathematics, specifically combinations
  • Knowledge of the birthday problem and its implications
  • Ability to interpret mathematical equations and probability calculations
NEXT STEPS
  • Study the derivation of the birthday problem using combinatorial methods
  • Learn about the complement probability technique in probability theory
  • Explore advanced probability concepts, such as the Law of Large Numbers
  • Investigate the implications of the birthday problem in cryptography and hashing algorithms
USEFUL FOR

Mathematicians, statisticians, educators, and anyone interested in probability theory and its applications in real-world scenarios.

musicgold
Messages
303
Reaction score
19
This is not really a homework problem. This is something I enjoy thinking about.

1. Homework Statement

How many people should there be in a group to have a 50% chance of at least two of them having the same birthday.
I know that there a many pages explaining how to solve this and the answer itself. But I wanted to develop my own way to figure this out.

Homework Equations


The problem boils down to how many unique pairs or handshakes can be formed in the group. That is N x (N-1) / 2 .
Also, the probability that a pair has the same birthday is 1/365.

Therefore, I think I have solve the following equation for N
N x (N-1) = 365

The Attempt at a Solution


The approximate value of N is 20. For N=20, I think the probability of having at least one pair with the same birthday is 52%. But according this Wikipedia page there has to be 23 people for a 50% probability in this case.

Clearly I am doing something wrong. Maybe assigning the 1/365 probability to every pair is not correct. I don't know.
 
Physics news on Phys.org
You can't add probabilities like that. Try to use the same approach to find when there is certainly a shared birthday and the problem should become obvious.
Similarly: 3 die rolls don't give you a 50% probability to roll a 1. The probability is a bit lower.

You calculated the number of people where we have on average 1/2 shared birthday.
 
musicgold said:
This is not really a homework problem. This is something I enjoy thinking about.

1. Homework Statement

How many people should there be in a group to have a 50% chance of at least two of them having the same birthday.
I know that there a many pages explaining how to solve this and the answer itself. But I wanted to develop my own way to figure this out.

Homework Equations


The problem boils down to how many unique pairs or handshakes can be formed in the group. That is N x (N-1) / 2 .
Also, the probability that a pair has the same birthday is 1/365.

Therefore, I think I have solve the following equation for N
N x (N-1) = 365

The Attempt at a Solution


The approximate value of N is 20. For N=20, I think the probability of having at least one pair with the same birthday is 52%. But according this Wikipedia page there has to be 23 people for a 50% probability in this case.

Clearly I am doing something wrong. Maybe assigning the 1/365 probability to every pair is not correct. I don't know.

The usual birthday problem looks at more than "pairs"; it asks for the probability that at least two people share a common birthday; perhaps three, or four, or more people share that same birthday. It does so by looking at the probability of no common birthdays, then taking its complement.

The problem of computing the probability that exactly one pair share a birthday (and no others do) is much harder.
 
Last edited:
musicgold said:
This is not really a homework problem. This is something I enjoy thinking about.

1. Homework Statement

How many people should there be in a group to have a 50% chance of at least two of them having the same birthday.
I know that there a many pages explaining how to solve this and the answer itself. But I wanted to develop my own way to figure this out.

Homework Equations


The problem boils down to how many unique pairs or handshakes can be formed in the group. That is N x (N-1) / 2 .
Also, the probability that a pair has the same birthday is 1/365.

Therefore, I think I have solve the following equation for N
N x (N-1) = 365

The Attempt at a Solution


The approximate value of N is 20. For N=20, I think the probability of having at least one pair with the same birthday is 52%. But according this Wikipedia page there has to be 23 people for a 50% probability in this case.

Clearly I am doing something wrong. Maybe assigning the 1/365 probability to every pair is not correct. I don't know.

Your method is an approximation for low probabilities. Let's take an example of 3 people, A, B, C. What is the probability of a shared birthday?

Your method is:

Probability A & B share a birthday = 1/365
Probability A & C share a birthday = 1/365
Probability B & C share a birthday = 1/365

So, total probability is 3/365 = 0.008219

But, that's only an approximation to the correct answer, which is

Probability A & B do not share a birthday = 364/365
Probability that C does not share a birthday with A & B (given that A & B do not share a birthday) = 363/365

Probability that A, B, C all have different birthdays = (364/365)(363/365).

Probability that there is a shared birthday = 1 - (364/365)(363/365) = 0.008204

As you increase the number of people, the approximation becomes less accurate (as you've discovered for about 20 people).
 

Similar threads

  • · Replies 9 ·
Replies
9
Views
4K
  • · Replies 12 ·
Replies
12
Views
5K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 34 ·
2
Replies
34
Views
6K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 12 ·
Replies
12
Views
4K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 1 ·
Replies
1
Views
8K
  • · Replies 2 ·
Replies
2
Views
3K