B Shorter half-life and therefore very radioactive -- why?

CPW
Messages
51
Reaction score
30
TL;DR Summary
In reading through The Physics of Energy, the textbook describes the decay chain of U-238:
"The longest half-life of any descendent in the chain is less 1 million years. Many half-lives are much shorter, making those nuclides very radioactive."

Why does having a short half-life make a radionuclide very radioactive?
In reading through The Physics of Energy, the textbook describes the decay chain of U-238:
"The longest half-life of any descendent in the chain is less 1 million years. Many half-lives are much shorter, making those nuclides very radioactive."
Why does having a short half-life make a radionuclide very radioactive?

My answer, qualitatively:
Relative to the time available for particle emissions from the long-lived parent radionuclide (U-238), the short-lived descendants have much less time to perform all the necessary particle emissions. And therefore, the short-lived radionuclides will have much higher radioactivity, as they will be emitting particles more frequently.
(Am I correct?)

However, quantitatively, I'm stuck.
I'd like a more formal answer than my answer above.

The amount of radioactivity (Bq) must be related to the number of disintegrations per gram per second.
But is there an equation relating these quantities?
 
Physics news on Phys.org
The activity (##A##), which is the number of disintegration per unit time, is given by
$$A = \lambda N$$
where ##\lambda## is the decay-constant and ##N## is the number of particles in the sample. If you assume that the number of particles ##N## in the sample does not change significantly during the period of time in which you measure the radioactivity, then you see that the higher the ##\lambda##, the higher the activity (number of disintegrations). It also turns out that the decay-constant ##\lambda## and the half-life ##\tau_{1/2}## are related by:
$$\tau_{1/2} = \frac {\ln 2} {\lambda}$$.
To summarize, small half-life -> big decay-constant ->big number of disintegrations per seconds = high activity.
 
  • Like
Likes artis, Astronuc, Keith_McClary and 2 others
Thank you.
 
  • Like
Likes Keith_McClary, dRic2 and berkeman
I just want to add that the intermediate nuclides are higher radioactive in the sense that the specific activity, i.e. the activity per gram of the nuclide is higher. However, if the decay products are in equilibrium with each other, the activity of all isotopes is the same, irrespective of their half live.
 
Toponium is a hadron which is the bound state of a valance top quark and a valance antitop quark. Oversimplified presentations often state that top quarks don't form hadrons, because they decay to bottom quarks extremely rapidly after they are created, leaving no time to form a hadron. And, the vast majority of the time, this is true. But, the lifetime of a top quark is only an average lifetime. Sometimes it decays faster and sometimes it decays slower. In the highly improbable case that...
I'm following this paper by Kitaev on SL(2,R) representations and I'm having a problem in the normalization of the continuous eigenfunctions (eqs. (67)-(70)), which satisfy \langle f_s | f_{s'} \rangle = \int_{0}^{1} \frac{2}{(1-u)^2} f_s(u)^* f_{s'}(u) \, du. \tag{67} The singular contribution of the integral arises at the endpoint u=1 of the integral, and in the limit u \to 1, the function f_s(u) takes on the form f_s(u) \approx a_s (1-u)^{1/2 + i s} + a_s^* (1-u)^{1/2 - i s}. \tag{70}...
Back
Top