MHB How to Show Equality of Probabilities?

  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Probabilities
Click For Summary
SUMMARY

This discussion focuses on demonstrating the equality of probabilities in a discrete probability space defined by $(\Omega, p)$ with induced probability measure $P$. The key expression derived is $P(A\cap B) - P(A)P(B) = P(A^c)P(B) - P(A^c\cap B)$. Participants confirm the correctness of the derivation and explore specific probability values, concluding that $P(B)$ cannot be 0.3 or 0.7 given $P(A) = 0.8$ and $P(A \cap B) = 0.4$. The discussion emphasizes the importance of understanding independence and the properties of probability measures.

PREREQUISITES
  • Understanding of discrete probability spaces
  • Familiarity with probability measures and their properties
  • Knowledge of events and their intersections in probability theory
  • Ability to manipulate and simplify probability expressions
NEXT STEPS
  • Study the concept of independence in probability theory
  • Learn about the properties of probability measures, particularly $P(\Omega) = 1$
  • Explore Venn diagrams as a visual tool for understanding probability relationships
  • Investigate the implications of negative probabilities and their impossibility in classical probability
USEFUL FOR

Mathematicians, students of probability theory, and anyone interested in understanding the relationships between events in discrete probability spaces.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :giggle:

Let $(\Omega, p)$ be a discrete probability room with induced probability measure $P$ and let $A, B\subseteq \Omega$ be two events.
I want to show that $P(A\cap B)-P(A)P(B)=P(A^c)P(B)-P(A^c\cap B)$.

For that do we write to what for example $P(A^c\cap B)$ is equal to simplify the expression or which way is the best one? :unsure:

We have that $(A\cap B)\cap (A^c\cap B)=\emptyset$ and so \begin{align*}&P((A\cap B)\cup (A^c\cap B))=P(A\cap B)+P (A^c\cap B)\\ & \Rightarrow P((A\cup A^c)\cap B)=P(A\cap B)+P (A^c\cap B)\end{align*}
Now we have to show that $P((A\cup A^c)\cap B)=P(A)P(B)+P(A^c)P(B)=[P(A)+P(A^c)]P(B)$, right?
We get that result if $(A\cup A^c)$ and $B$ are independent, or not? How can we show that? :unsure:

Or is there an other (better) way to show the desired expression? :unsure:
 
Last edited by a moderator:
Physics news on Phys.org
Hey mathmari!

We have that $(A\cup A^c)=\Omega$ and $B\subseteq \Omega$.
So $(A\cup A^c)\cap B=B$. 🤔

Also note that a probability measure must have $P(\Omega)=1$.
And since $A$ and $A^c$ are disjoint, we also have $P(A\cup A^c)=P(A)+P(A^c)$. 🤔
 
Klaas van Aarsen said:
We have that $(A\cup A^c)=\Omega$ and $B\subseteq \Omega$.
So $(A\cup A^c)\cap B=B$. 🤔

Also note that a probability measure must have $P(\Omega)=1$.
And since $A$ and $A^c$ are disjoint, we also have $P(A\cup A^c)=P(A)+P(A^c)$. 🤔

So do we have the following ?

\begin{align*}&P((A\cap B)\cup (A^c\cap B))=P(A\cap B)+P (A^c\cap B) \\ & \Rightarrow P((A\cup A^c)\cap B)=P(A\cap B)+P (A^c\cap B)\\ &\Rightarrow P( B)=P(A\cap B)+P (A^c\cap B)\end{align*} and \begin{align*}P(A)P(B)+P(A^c)P(B)&=[P(A)+P(A^c)]P(B)\\ & =[P(A)+1-P(A))]P(B)\\ & =P(B)\end{align*} Combining these results we get \begin{align*}
&P(A\cap B)+P (A^c\cap B)=P(A)P(B)+P(A^c)P(B) \\ & \Rightarrow P(A\cap B)-P(A)P(B)=P(A^c)P(B)-P(A^c\cap B)\end{align*}
Is everything correct? :unsure:
 
Yep. All correct. (Nod)
 
Klaas van Aarsen said:
Yep. All correct. (Nod)

Great! (Sun)

Suppose we have that $P(A)=0.8$ and $P(A\cap B)=0.4$.

I want to check if $P(B)=0.3$ and $P(B)=0.7$ is possible.

For $P(B)=0.3$ : We substitute at the above proven equality and since we get then $P(A^c\cap B)=-0.1$ and since a probability cannot be negativ $P(B)$ cannot be $0.3$.

For $P(B)=0.7$ : Substituting at the above equality we get an acceptable probability. But substituting at $P(A\cup B)=P(A)+P(B)-P(A\cap B)$ we get that $P(A\cup B)=1.1$ and since a probability cannot be greater than $1$ $P(B)$ cannot be $0.7$.

Is everything correct? :unsure:
 
Yep. (Nod)p

We can verify by drawing a Venn diagram. (Nerd)
 
Last edited:
If there are an infinite number of natural numbers, and an infinite number of fractions in between any two natural numbers, and an infinite number of fractions in between any two of those fractions, and an infinite number of fractions in between any two of those fractions, and an infinite number of fractions in between any two of those fractions, and... then that must mean that there are not only infinite infinities, but an infinite number of those infinities. and an infinite number of those...

Similar threads

  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 7 ·
Replies
7
Views
797
Replies
10
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 36 ·
2
Replies
36
Views
5K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 11 ·
Replies
11
Views
1K
  • · Replies 62 ·
3
Replies
62
Views
4K