MHB Show GCD of x,y,z is 1: Wave Hello!

  • Thread starter Thread starter evinda
  • Start date Start date
  • Tags Tags
    Gcd
evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! (Wave)

We suppose that the integers $x,y,z$ satisfy $x^2+2y^2=z^2$ and $(x,y)=1$ . I want to show that $(x,z)=(y,z)=1$, and that $x$ is odd and $y$ even.

I have tried the following:

Let $(x,z)=d>1$. Then there exists a prime number $p$ such that $p \mid d$.
Since $d \mid x$ and $d \mid z$, we get that $p \mid x$ and $p \mid z$. So $p \mid x^2$, $p \mid z^2$.
Thus $p \mid z^2-x^2=2y^2$. But then how can we deduce that $p \mid y^2$, so that we could get a contradiction? (Thinking)
 
Mathematics news on Phys.org
First show that $x$ is odd. Suppose it was even. Then $x^2+2y^2=z^2\implies z$ would be even; hence $z^2=x^2+2y^2$ would be divisible by $4$; hence $y$ would be even. (If $y$ were odd, $x^2+2y^2\equiv2\pmod4$.) Hence $x$ and $y$ would be both even, contradicting $\gcd(x,y)=1$. Thus $x$ must be odd.

Therefore the $p$ in your working must be odd (since it divides $x$, which is odd). Then $p\mid2y^2$ should imply $p\mid y^2$, giving your contradiction. Showing that $\gcd(y,z)=1$ is similar (and more straightforward).

Finally, note that $x$ odd $\implies\ x^2\equiv1\pmod8$. If $y$ were odd, then $z^2=x^2+2y^2\equiv3\pmod8$, which is impossible.
 
Last edited:
Olinguito said:
First show that $x$ is odd. Suppose it was even. Then $x^2+2y^2=z^2\implies z$ would be even;



$z^2$ would be even and this would imply that $z$ is even, right? (Thinking)

Olinguito said:
(If $y$ were odd, $x^2+2y^2\equiv2\pmod4$.)

Wouldn't we have that $x^2+2y^2 \equiv 3 \pmod{4}$ ?
 
evinda said:
$z^2$ would be even and this would imply that $z$ is even, right? (Thinking)
That is right. (Smile)

evinda said:
Wouldn't we have that $x^2+2y^2 \equiv 3 \pmod{4}$ ?
No, at this juncture we are assuming $x$ is even to get a contradiction.
 
evinda said:
Hello! (Wave)

We suppose that the integers $x,y,z$ satisfy $x^2+2y^2=z^2$ and $(x,y)=1$ . I want to show that $(x,z)=(y,z)=1$, and that $x$ is odd and $y$ even.

I have tried the following:

Let $(x,z)=d>1$. Then there exists a prime number $p$ such that $p \mid d$.
Since $d \mid x$ and $d \mid z$, we get that $p \mid x$ and $p \mid z$. So $p \mid x^2$, $p \mid z^2$.

Hey evinda!

As an alternative to Olinguito's approach, let's follow your reasoning a bit further.
We also have more specifically that $p^2 \mid x^2$ and $p^2 \mid z^2$, don't we? (Wondering)

evinda said:
Thus $p \mid z^2-x^2=2y^2$. But then how can we deduce that $p \mid y^2$, so that we could get a contradiction? (Thinking)

Thus $p^2 \mid 2y^2$.
If $p=2$ we must have $p\mid y$, and otherwise we must also have that $p\mid y$, don't we? (Wondering)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top