MHB Show How to Prove Divergence of g'($\theta$)

  • Thread starter Thread starter Dustinsfl
  • Start date Start date
  • Tags Tags
    Divergent Series
Dustinsfl
Messages
2,217
Reaction score
5
$$
g'(\theta) = 2\sum_{n = 1}^{\infty}(-1)^{n + 1}\cos n\theta.
$$
How can I show that this series diverges for all values other than $\pm\frac{\pi}{2}$?
 
Physics news on Phys.org
dwsmith said:
$$
g'(\theta) = 2\sum_{n = 1}^{\infty}(-1)^{n + 1}\cos n\theta.
$$
How can I show that this series diverges for all values other than $\pm\frac{\pi}{2}$?

Using the identity $\displaystyle \cos n \theta= \frac{e^{i n \theta}+ e^{-i n \theta}}{2} \ $ You obtain that the series is the sum of two geometric series the sum of the first N terms being...

$\displaystyle S_{N}= \frac{1+ (-1)^{N}\ e^{i N \theta}}{1+e^{i \theta}} + \frac{1+ (-1)^{N}\ e^{- i N \theta}}{1+e^{- i \theta}}$ (1)

Now what is $\displaystyle \lim_{N \rightarrow \infty} S_{N}$?...

Kind regards

$\chi$ $\sigma$
 
Last edited:
chisigma said:
Using the identity $\displaystyle \cos n \theta= \frac{e^{i n \theta}+ e^{-i n \theta}}{2} \ $ You obtain that the series is the sum of two geometric series the sum of the first N terms being...

$\displaystyle S_{N}= \frac{1+ e^{i N \theta}}{1+e^{i \theta}} + \frac{1+ e^{- i N \theta}}{1+e^{- i \theta}}$ (1)

Now what is $\displaystyle \lim_{N \rightarrow \infty} S_{N}$?...

Kind regards

$\chi$ $\sigma$

When I obtain the same common denominator for those 2 fractions, I don't get the original problem. So how are they equivalent?
 

Similar threads

Replies
4
Views
3K
Replies
3
Views
2K
Replies
29
Views
2K
Replies
3
Views
1K
Replies
5
Views
1K
Replies
3
Views
2K
Replies
17
Views
975
Replies
5
Views
2K
Back
Top