MHB Show Im(gf)=Im(g) When f is Onto (Wondering)

  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Function Image
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Let $f:B\rightarrow C$ and $g:C\rightarrow D$.
I want to show that Im(gf)=Im(g), when f is onto. I have done the following:

Let $x\in \text{Im}g$.
Then $\exists y\in C$ such that $g(y)=x$.
Since $f$ is onto, we have that $\exists b\in B$ such that $f(b)=y$.
Then $g(f(b))=x\Rightarrow x=(gf)(b)$.
So, $x\in \text{Im}(gf)$.

Let $x\in \text{Im}(gf)$ then $\exists z\in B$ such that $x=(gf)(z)=g(f(z))$.
Since $f$ is onto, we have that $\forall c\in C \ \ \exists b\in B$ such that $f(b)=c$.
We choose $c=f(z)$ and then we have that $x=g(c)\Rightarrow x\in \text{Im}(g)$.

Is my last step correct? I am not really sure.. (Wondering)
 
Last edited by a moderator:
Physics news on Phys.org
Hi mathmari,

There is no need of $f$ to be onto to prove $Im(gf)\subseteq Im(g)$ since, by definition, $f(z)\in C$
 
Fallen Angel said:
There is no need of $f$ to be onto to prove $Im(gf)\subseteq Im(g)$ since, by definition, $f(z)\in C$

Let $x\in \text{Im}(gf)$ then $\exists z\in B$ such that $x=(gf)(z)=g(f(z))$.
We have that $f(z)\in C$, say $c:=f(z)$, then we have that $x=g(c)\Rightarrow x\in \text{Im}(g)$.

Is this correct? Or didn't you mean it so? (Wondering)
 
Yes, that's correct.
 
Thank you very much! (Yes)
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...

Similar threads

Replies
7
Views
2K
Replies
3
Views
447
Replies
13
Views
582
Replies
18
Views
2K
Replies
7
Views
2K
Replies
2
Views
2K
Back
Top