MHB Show Im(gf)=Im(g) When f is Onto (Wondering)

  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Function Image
Click For Summary
The discussion centers on proving that Im(gf) = Im(g) when f is onto. The initial argument shows that if x is in Im(g), then it can be expressed as g(f(b)) for some b in B, thus x is also in Im(gf). Conversely, if x is in Im(gf), it can be represented as g(f(z)), and since f is onto, every element in C is covered, confirming x is in Im(g). Participants clarify that the onto property of f is not necessary for the inclusion Im(gf) ⊆ Im(g) to hold true. The conversation concludes with confirmation of the correctness of the reasoning presented.
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Let $f:B\rightarrow C$ and $g:C\rightarrow D$.
I want to show that Im(gf)=Im(g), when f is onto. I have done the following:

Let $x\in \text{Im}g$.
Then $\exists y\in C$ such that $g(y)=x$.
Since $f$ is onto, we have that $\exists b\in B$ such that $f(b)=y$.
Then $g(f(b))=x\Rightarrow x=(gf)(b)$.
So, $x\in \text{Im}(gf)$.

Let $x\in \text{Im}(gf)$ then $\exists z\in B$ such that $x=(gf)(z)=g(f(z))$.
Since $f$ is onto, we have that $\forall c\in C \ \ \exists b\in B$ such that $f(b)=c$.
We choose $c=f(z)$ and then we have that $x=g(c)\Rightarrow x\in \text{Im}(g)$.

Is my last step correct? I am not really sure.. (Wondering)
 
Last edited by a moderator:
Physics news on Phys.org
Hi mathmari,

There is no need of $f$ to be onto to prove $Im(gf)\subseteq Im(g)$ since, by definition, $f(z)\in C$
 
Fallen Angel said:
There is no need of $f$ to be onto to prove $Im(gf)\subseteq Im(g)$ since, by definition, $f(z)\in C$

Let $x\in \text{Im}(gf)$ then $\exists z\in B$ such that $x=(gf)(z)=g(f(z))$.
We have that $f(z)\in C$, say $c:=f(z)$, then we have that $x=g(c)\Rightarrow x\in \text{Im}(g)$.

Is this correct? Or didn't you mean it so? (Wondering)
 
Yes, that's correct.
 
Thank you very much! (Yes)
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
854
  • · Replies 13 ·
Replies
13
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
5
Views
2K
  • · Replies 18 ·
Replies
18
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 5 ·
Replies
5
Views
922
  • · Replies 26 ·
Replies
26
Views
828
  • · Replies 2 ·
Replies
2
Views
2K