MHB Show Self-Adjointness of Operator E on $L_{2}$ of Square Integrable Functions

  • Thread starter Thread starter Fermat1
  • Start date Start date
  • Tags Tags
    Self
Fermat1
Messages
180
Reaction score
0
Conisider the space $L_{2}$ of square integrable functions on R with the usual integral inner product. Show that the operator E defined by, for f in $L_{2}$,
$(Ef)(x)=0.5(f(x)+f(-x)$ is self adoint.

It seems that in order for this to be true we have that f(-x) is the conjugate of f(x) but I don't know why this is true.
 
Physics news on Phys.org
So, we need to show that $\langle Ef | g \rangle = \langle f | Eg \rangle$ for all $f,g\in L_{2}$. This is tantamount to showing that
$$ \frac{1}{2} \int_{ \mathbb{R}}\left[ f(x)+f(-x) \right]^{*} g(x) \, d\mu
= \frac{1}{2} \int_{\mathbb{R}} f^{*}(x) \left[ g(x)+g(-x) \right] \, d\mu,$$
or
$$ \int_{ \mathbb{R}}\left[ f^{*}(x) g(x)+f^{*}(-x) g(x) \right]\, d\mu
= \int_{\mathbb{R}} \left[f^{*}(x) g(x)+f^{*}(x)g(-x) \right] \, d\mu,$$
or
$$\int_{ \mathbb{R}} f^{*}(-x) g(x)\, d\mu
= \int_{\mathbb{R}} f^{*}(x)g(-x) \, d\mu.$$
Can you think of a way to show this?
 
Ackbach said:
So, we need to show that $\langle Ef | g \rangle = \langle f | Eg \rangle$ for all $f,g\in L_{2}$. This is tantamount to showing that
$$ \frac{1}{2} \int_{ \mathbb{R}}\left[ f(x)+f(-x) \right]^{*} g(x) \, d\mu
= \frac{1}{2} \int_{\mathbb{R}} f^{*}(x) \left[ g(x)+g(-x) \right] \, d\mu,$$
or
$$ \int_{ \mathbb{R}}\left[ f^{*}(x) g(x)+f^{*}(-x) g(x) \right]\, d\mu
= \int_{\mathbb{R}} \left[f^{*}(x) g(x)+f^{*}(x)g(-x) \right] \, d\mu,$$
or
$$\int_{ \mathbb{R}} f^{*}(-x) g(x)\, d\mu
= \int_{\mathbb{R}} f^{*}(x)g(-x) \, d\mu.$$
Can you think of a way to show this?

I had thought of using parts and then using the fact that square integrable functions vanish at + and - infinity but sine there are no derivatives involved that looks to be a non-starter.
 
Fermat said:
I had thought of using parts and then using the fact that square integrable functions vanish at + and - infinity but sine there are no derivatives involved that looks to be a non-starter.

Well, think of the integral (temporarily) as a Riemann integral:
$$\int_{-\infty}^{\infty}f^{*}(x)g(-x) \, dx.$$
What happens when you let $y=-x$?
 
Ackbach said:
Well, think of the integral (temporarily) as a Riemann integral:
$$\int_{-\infty}^{\infty}f^{*}(x)g(-x) \, dx.$$
What happens when you let $y=-x$?

you get the equality.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...

Similar threads

Back
Top