Show that a rational function under some constraint is actually a polynomial.

Click For Summary
SUMMARY

The discussion establishes that a rational function \( r(x) \in \mathbb{Q}(x) \) is a polynomial in \( \mathbb{Q}[x] \) if it takes integer values for infinitely many integers \( n \). The proof employs Euclid's algorithm to express \( r(x) \) as \( a(x) + \frac{b(x)}{q(x)} \), where \( \deg(b(x)) < \deg(q(x)) \). By selecting \( n \) appropriately, it is shown that \( b(x) \) must be the zero polynomial, leading to the conclusion that \( r(x) = a(x) \). This result is significant in the context of polynomial functions and rational expressions.

PREREQUISITES
  • Understanding of rational functions and polynomial expressions in \( \mathbb{Q}[x] \)
  • Familiarity with Euclid's algorithm in polynomial rings
  • Knowledge of integer properties and divisibility
  • Basic concepts of degrees of polynomials
NEXT STEPS
  • Study the implications of polynomial degree in rational functions
  • Explore advanced applications of Euclid's algorithm in algebra
  • Investigate integer value properties of rational functions
  • Learn about the structure of polynomial rings over fields
USEFUL FOR

Mathematicians, algebra students, and educators interested in the properties of rational functions and their relationship to polynomial expressions.

caffeinemachine
Gold Member
MHB
Messages
799
Reaction score
15
Let $r(x)\in\mathbb Q(x)$ be a rational function over $\mathbb Q$. Assume $r(n)$ is an integer for infinitely many integers $n$. Then show that $r(x)$ is a polynomial in $\mathbb Q[x]$.
 
Mathematics news on Phys.org
caffeinemachine said:
Let $r(x)\in\mathbb Q(x)$ be a rational function over $\mathbb Q$. Assume $r(n)$ is an integer for infinitely many integers $n$. Then show that $r(x)$ is a polynomial in $\mathbb Q[x]$.
Let $r(x) = \dfrac{p(x)}{q(x)}$, where $p(x),\,q(x)\in \mathbb Q[x]$. Apply Euclid's algorithm in $\mathbb Q[x]$ to see that $p(x) = a(x)q(x) + b(x)$, where $a(x),\,b(x) \in\mathbb Q[x]$ and $\deg(b(x)) < \deg(q(x)).$ Then $$r(x) = a(x) + \frac{b(x)}{q(x)}.$$ Now choose $n$ to be a multiple of the lcm of the denominators of the coefficients of $a(x)$. Then each term in the polynomial $a(n)$ is an integer except perhaps the constant term. Let $c$ be the fractional part of the constant term. If $b(x)$ is not the zero polynomial then by choosing $n$ large enough we can ensure that $|b(n)/q(n)|$ is nonzero, less than $1$ (because $\deg(b(x)) < \deg(q(x))$), and $b(n)/q(n)$ is different from $-c$ and $1-c$. That would mean that $r(n)$ is not an integer.

The conclusion is that $b(x)$ must be $0$ and therefore $r(x) = a(x) \in \mathbb{Q}[x]$.
 
Opalg said:
Let $r(x) = \dfrac{p(x)}{q(x)}$, where $p(x),\,q(x)\in \mathbb Q[x]$. Apply Euclid's algorithm in $\mathbb Q[x]$ to see that $p(x) = a(x)q(x) + b(x)$, where $a(x),\,b(x) \in\mathbb Q[x]$ and $\deg(b(x)) < \deg(q(x)).$ Then $$r(x) = a(x) + \frac{b(x)}{q(x)}.$$ Now choose $n$ to be a multiple of the lcm of the denominators of the coefficients of $a(x)$. Then each term in the polynomial $a(n)$ is an integer except perhaps the constant term. Let $c$ be the fractional part of the constant term. If $b(x)$ is not the zero polynomial then by choosing $n$ large enough we can ensure that $|b(n)/q(n)|$ is nonzero, less than $1$ (because $\deg(b(x)) < \deg(q(x))$), and $b(n)/q(n)$ is different from $-c$ and $1-c$. That would mean that $r(n)$ is not an integer.

The conclusion is that $b(x)$ must be $0$ and therefore $r(x) = a(x) \in \mathbb{Q}[x]$.
That's good. Here's mine.Let $r(x)=g(x)/f(x)$ for some $f(x),g(x)\in\mathbb Q[x]$. Clearing the denominators of $f$ and $g$ we can write $r(x)=g_1(x)/f_1(x)$ for some $g_1,f_1\in\mathbb Z[x]$. By hypothesis
\begin{equation*}
\exists N_i\in \mathbb Z\text{ such that } N_{i}<N_{i+1}\text{ and }f_1(N_i)|g_1(N_i)\text{ for all } i>0\tag{1}
\end{equation*}
Now by Euclid we can write $f(x)a(x)+g(x)b(x)=1$ for some $a(x),b(x)\in\mathbb Q[x]$. Clearing the denominators we can write the last equation as
\begin{equation*}
f_1(x)a_1(x)+g_1(x)b_1(x)=n\text{ for a fixed }n\in\mathbb Z\text{ and }a_1(x),b_1(x)\in\mathbb Z[x]\tag{2}
\end{equation*}
But from (1) and (2) we have that $f_1(N_i)|n$ for all $i>0$. Since there are only finitely many factors of $n$ we must have a factor $d$ of $n$ such that $f_1(N_i)=d$ holds for infinitely many $N_i$'s. This is impossible since if this were true then the polynomial $z(x)=f_1(x)-d$ would have infinitely many distinct roots. This furnishes the required contradiction and the proof is complete.$\blacksquare$
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 0 ·
Replies
0
Views
649
Replies
3
Views
2K
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
Replies
48
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K