In the textbook I have (its a textbook for calculus from my undergrad studies, written by Greek authors) some times it uses the lemma that(adsbygoogle = window.adsbygoogle || []).push({});

"for any irrational number there exists a sequence of rational numbers that converges to it",

and it doesn't have a proof for it, just saying that it is a consequence of the fact that ##\mathbb{Q}## is dense in ##\mathbb R##.

Any ideas how to proceed for a rigorous proof?

My idea is that if ##x=x_0.x_1x_2...x_n,...## is the representation of the irrational x in the decimal system with ##x_i \in {0...9}## then the sequence

##\sigma_n=\sum\limits_{k=0}^{n}\frac{x_k}{10^k}## is rational and converges to the number but something tells me this is not a rigorous proof.

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# I Rational sequence converging to irrational

Have something to add?

Draft saved
Draft deleted

**Physics Forums | Science Articles, Homework Help, Discussion**