MHB Show that p³q + q³r + r³p is a constant

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Constant
AI Thread Summary
The discussion focuses on proving that the expression p³q + q³r + r³p is constant under the conditions p + q + r = 0 and pq + pr + qr = -3. A solution is presented, although it is noted to be less elegant than other methods. Participants explore various approaches to the problem, emphasizing the need for a rigorous proof. The conversation highlights the mathematical relationships between the variables involved. Ultimately, the goal is to establish the constancy of the expression given the specified constraints.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Show that for all real numbers $p, q, r$ such that $p+q+r=0$ and $pq+pr+qr=-3$, the expression $p^3q+q^3r+r^3p$ is a constant.
 
Mathematics news on Phys.org
Re: Show that p³q+q³r+r³p is a constant

Here is my solution:

Given $p+q+r = 0$ and $pq+qr+rp = -3$ Now Let $pqr = k$

Now form an cubic equation whose roots are $x = p\;,q\;,r$

$x^3-(p+q+r)x^2+(pq+qr+rp)x-pqr = 0$

$x^3-3x-k=0\Rightarrow x^3 = 3x+k$

Now If $x = p$ is a root of given equation, Then $p^3 = 3p+k$

Similarly If $x = q$ is a root of given equation, Then $q^3 = 3q+k$

Similarly If $x = r$ is a root of given equation, Then $r^3 = 3r+k$

So $p^3q = (3p+k)q = 3pq+kq$

Similarly $q^3r = (3q+k)r = 3pr+kr$

Similarly $r^3p = (3r+k)p = 3rp+kp$

Now Add all These, we get $p^3q+q^3r+r^3p = 3(pq+qr+rp)+(p+q+r)k = -9+0 = -9$(Constant)
 
Last edited by a moderator:
Re: Show that p³q+q³r+r³p is a constant

Not elegant but different approach

P = - (q+r)

So p^3 q = - p^2 q^2 – p^2 q r
Similarly q^3 r = q^2 r^2 – q^2 pr
r^3 p = r^2 p^2 – r^2 pr
add all 3 to get
p^3 q + q^3 r + r^3 p = - (p^2q^2 + q^2 r^2 + r^2 p^2) – pqr(p+q + r)
= - (p^2q^2 + q^2 r^2 + r^2 p^2) .. (1)
Now as we have p^2 q^2 + q^2 r^2 + r^2 p^2 above we square
pq+pr+qr=−3 to get
p^2q^2 + p^2 r^2 + q^2 r ^2 + 2p^2qr + 2r^2qp + 2 q^pr = 9
or p^2q^2 + p^2 r^2 + q^2 r ^2 + 2pqr(p + r + q) = 9
or p^2q^2 + p^2 r^2 + q^2 r ^2 = 9 ... (2)
from (1) and (2) p^3 q + q^3 r + r^3 p = - 9
 
Last edited:
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top