MHB Show that p³q + q³r + r³p is a constant

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Constant
AI Thread Summary
The discussion focuses on proving that the expression p³q + q³r + r³p is constant under the conditions p + q + r = 0 and pq + pr + qr = -3. A solution is presented, although it is noted to be less elegant than other methods. Participants explore various approaches to the problem, emphasizing the need for a rigorous proof. The conversation highlights the mathematical relationships between the variables involved. Ultimately, the goal is to establish the constancy of the expression given the specified constraints.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Show that for all real numbers $p, q, r$ such that $p+q+r=0$ and $pq+pr+qr=-3$, the expression $p^3q+q^3r+r^3p$ is a constant.
 
Mathematics news on Phys.org
Re: Show that p³q+q³r+r³p is a constant

Here is my solution:

Given $p+q+r = 0$ and $pq+qr+rp = -3$ Now Let $pqr = k$

Now form an cubic equation whose roots are $x = p\;,q\;,r$

$x^3-(p+q+r)x^2+(pq+qr+rp)x-pqr = 0$

$x^3-3x-k=0\Rightarrow x^3 = 3x+k$

Now If $x = p$ is a root of given equation, Then $p^3 = 3p+k$

Similarly If $x = q$ is a root of given equation, Then $q^3 = 3q+k$

Similarly If $x = r$ is a root of given equation, Then $r^3 = 3r+k$

So $p^3q = (3p+k)q = 3pq+kq$

Similarly $q^3r = (3q+k)r = 3pr+kr$

Similarly $r^3p = (3r+k)p = 3rp+kp$

Now Add all These, we get $p^3q+q^3r+r^3p = 3(pq+qr+rp)+(p+q+r)k = -9+0 = -9$(Constant)
 
Last edited by a moderator:
Re: Show that p³q+q³r+r³p is a constant

Not elegant but different approach

P = - (q+r)

So p^3 q = - p^2 q^2 – p^2 q r
Similarly q^3 r = q^2 r^2 – q^2 pr
r^3 p = r^2 p^2 – r^2 pr
add all 3 to get
p^3 q + q^3 r + r^3 p = - (p^2q^2 + q^2 r^2 + r^2 p^2) – pqr(p+q + r)
= - (p^2q^2 + q^2 r^2 + r^2 p^2) .. (1)
Now as we have p^2 q^2 + q^2 r^2 + r^2 p^2 above we square
pq+pr+qr=−3 to get
p^2q^2 + p^2 r^2 + q^2 r ^2 + 2p^2qr + 2r^2qp + 2 q^pr = 9
or p^2q^2 + p^2 r^2 + q^2 r ^2 + 2pqr(p + r + q) = 9
or p^2q^2 + p^2 r^2 + q^2 r ^2 = 9 ... (2)
from (1) and (2) p^3 q + q^3 r + r^3 p = - 9
 
Last edited:
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top