Show that $S(m)=\Theta(m^2)$ with Recurrence Relation

  • Context: MHB 
  • Thread starter Thread starter evinda
  • Start date Start date
  • Tags Tags
    Recurrence Relation
Click For Summary
SUMMARY

The discussion centers on proving that the recurrence relation $S(m) = S(m-1) + m$ results in $S(m) = \Theta(m^2)$. The proof utilizes the definitions of Big O and Big Omega notation, establishing that $S(m)$ is bounded above by $c_2 m^2$ and below by $c_1 m^2$, with both constants $c_1$ and $c_2$ being at least 1/2. Additionally, an alternative method for solving the recurrence is suggested, involving the summation of integers, leading to the same conclusion of $S(m) = \mathcal{O}(m^2)$.

PREREQUISITES
  • Understanding of recurrence relations
  • Familiarity with Big O, Big Omega, and Big Theta notation
  • Basic knowledge of summation formulas
  • Experience with mathematical proofs and inequalities
NEXT STEPS
  • Study the Master Theorem for solving recurrence relations
  • Learn about the substitution method for recurrence relations
  • Explore the properties of summations and their applications in algorithm analysis
  • Investigate advanced topics in asymptotic analysis
USEFUL FOR

Mathematicians, computer scientists, and software engineers interested in algorithm analysis, particularly those focusing on recurrence relations and asymptotic notation.

evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! (Smile)

Let $S(m)=S(m-1)+m$.
I want to show that $S(m)=\Theta(m^2)$.

That's what I have tried:

We suppose a positive integer $m>0$. We suppose that $S(m-1)=\Theta((m-1)^2)$, so it holds that $\exists c_1, c_2>0$ such that :
$$c_1 (m-1)^2 \leq S(m-1) \leq c_2(m-1)^2$$

We will show that $c_1 m^2 \leq S(m) \leq c_2 m^2$.

$$S(m)=S(m-1)+m \leq c_2(m-1)^2+m=c_2 m^2-2c_2 m +c_2+m=c_2m^2-(2c_2m-c_2-m) \leq c_2 m^2, \text{ if } 2c_2m-c_2-m \geq 0 \Rightarrow c_2(2m-1) \geq m \Rightarrow c_2 \geq \frac{m}{2m-1} \to \frac{1}{2} \Rightarrow c_2 \geq \frac{1}{2}$$

So, we have that $S(m)=O(m^2)$.

$$S(m)=S(m-1)+m \geq c_1(m-1)^2+m=c_1 m^2-2c_1 m +c_1+m=c_1m^2-(2c_1m-c_1-m) \geq c_1 m^2, \text{ if } 2c_1m-c_1-m \leq 0 \Rightarrow c_1(2m-1) \geq m \Rightarrow c_1 \geq \frac{m}{2m-1} \to \frac{1}{2} \Rightarrow c_1 \geq \frac{1}{2}$$

So, we have that $S(m)=\Omega(m^2)$.

Therefore, $S(m)=\Theta(m^2)$.

Could you tell me if it is right or if I have done something wrong? (Thinking)

Also, can we find from the above the exact solution of the recurrence relation, or do we have to do it in an other way, like using the substitution method? If so, how can we know when the recursion ends, without having an initial condition? :confused:
 
Physics news on Phys.org
evinda said:
Hello! (Smile)

Let $S(m)=S(m-1)+m$.
I want to show that $S(m)=\Theta(m^2)$.

That's what I have tried:

We suppose a positive integer $m>0$. We suppose that $S(m-1)=\Theta((m-1)^2)$, so it holds that $\exists c_1, c_2>0$ such that :
$$c_1 (m-1)^2 \leq S(m-1) \leq c_2(m-1)^2$$

We will show that $c_1 m^2 \leq S(m) \leq c_2 m^2$.

$$S(m)=S(m-1)+m \leq c_2(m-1)^2+m=c_2 m^2-2c_2 m +c_2+m=c_2m^2-(2c_2m-c_2-m) \leq c_2 m^2, \text{ if } 2c_2m-c_2-m \geq 0 \Rightarrow c_2(2m-1) \geq m \Rightarrow c_2 \geq \frac{m}{2m-1} \to \frac{1}{2} \Rightarrow c_2 \geq \frac{1}{2}$$

So, we have that $S(m)=O(m^2)$.

$$S(m)=S(m-1)+m \geq c_1(m-1)^2+m=c_1 m^2-2c_1 m +c_1+m=c_1m^2-(2c_1m-c_1-m) \geq c_1 m^2, \text{ if } 2c_1m-c_1-m \leq 0 \Rightarrow c_1(2m-1) \geq m \Rightarrow c_1 \geq \frac{m}{2m-1} \to \frac{1}{2} \Rightarrow c_1 \geq \frac{1}{2}$$

So, we have that $S(m)=\Omega(m^2)$.

Therefore, $S(m)=\Theta(m^2)$.

Could you tell me if it is right or if I have done something wrong? (Thinking)

Also, can we find from the above the exact solution of the recurrence relation, or do we have to do it in an other way, like using the substitution method? If so, how can we know when the recursion ends, without having an initial condition? :confused:

Writing the equation in slightly different form You have...

$\displaystyle s_{n+1} = s_{n} + n + 1\ (1)$

Setting $s_{0}$ the value of the $s_{n}$ for n=0, the solution of (1) is...

$\displaystyle s_{n} = s_{0} + \sum_{k=1}^{n} k = s_{0} + \frac{n\ (n+1)}{2}\ (2)$

... so that is $\displaystyle s_{n} = \mathcal{O} (n^{2})$...

Kind regards

$\chi$ $\sigma$
 
chisigma said:
Writing the equation in slightly different form You have...

$\displaystyle s_{n+1} = s_{n} + n + 1\ (1)$

Setting $s_{0}$ the value of the $s_{n}$ for n=0, the solution of (1) is...

$\displaystyle s_{n} = s_{0} + \sum_{k=1}^{n} k = s_{0} + \frac{n\ (n+1)}{2}\ (2)$

... so that is $\displaystyle s_{n} = \mathcal{O} (n^{2})$...

Kind regards

$\chi$ $\sigma$

I see.. But is the way I showed that $S(m)=\Theta(m^2)$ also right?
Or have I done something wrong? :confused:
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 27 ·
Replies
27
Views
4K
Replies
8
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
16
Views
2K
  • · Replies 29 ·
Replies
29
Views
4K