MHB Show that set of points form right-angled triangle

Click For Summary
To determine if the three given points form a right-angled triangle, the slopes of segments AB and AC can be analyzed. The slopes calculated show that their product is -1, indicating that the segments are perpendicular. Additionally, using the Pythagorean theorem, the distances between the points confirm that the sum of the squares of the two shorter sides equals the square of the longest side. Therefore, the three points indeed represent the vertices of a right triangle. This conclusion is supported by both slope analysis and vector calculations.
Yazan975
Messages
30
Reaction score
0
View attachment 8415

I was thinking of using Pythagoras here but it didn't get me far
Any suggestions?
 

Attachments

  • Screen Shot 2018-09-17 at 8.54.44 PM-min.png
    Screen Shot 2018-09-17 at 8.54.44 PM-min.png
    18.9 KB · Views: 110
Mathematics news on Phys.org
Let's begin by plotting the 3 given points:

View attachment 8418

It appears that \(\overline{AB}\) and \(\overline{AC}\) are the legs. Can you show that the product of the slopes of these two segments is -1?
 

Attachments

  • mhb_0000.png
    mhb_0000.png
    1.7 KB · Views: 121
Yazan975 said:
I was thinking of using Pythagoras here but it didn't get me far
Any suggestions?
"Pythagoras" works wonderfully!

The distance from (1, -4) to (2, -3) is $\sqrt{(1- 2)^2+ (-4+ 3)^2}= \sqrt{1+ 1}= \sqrt{2}$.
The distance from (1, -4) to (4, -7) is $\sqrt{(1- 4)^2+ (-4+ 7)^2}= \sqrt{9+ 9}= \sqrt{18}$
The distance from (2, -3) to (4, -7) is $\sqrt{(2- 4)^2+ (-3+ 7)^2}= \sqrt{4+ 16}= \sqrt{20}$

Clearly $\sqrt{20}$ is larger than either $\sqrt{2}$ or $\sqrt{18}$ so let $a= \sqrt{2}$, $b= \sqrt{18}$, and $c= \sqrt{20}$. Is it true that $a^2+ b^2= c^2$?
 
To follow up (which is what we're hoping you will do when given help), we find:

$$m_{\overline{AB}}=\frac{3-(-4)}{2-1}=1$$

$$m_{\overline{AC}}=\frac{-7-(-4)}{4-1}=-1$$

Hence:

$$m_{\overline{AB}}\cdot m_{\overline{AC}}=-1$$

And so we may conclude that the 3 given points must be the vertices of a right triangle.
 
Alternatively, use vectors:

$$\vec{AB}\cdot\vec{AC}=<1,1>\cdot<3,-3>=0\implies\overline{AB}\perp\overline{AC}$$
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 59 ·
2
Replies
59
Views
22K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 38 ·
2
Replies
38
Views
4K
  • · Replies 2 ·
Replies
2
Views
986
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K