Show that sin10∘ is irrational number

Click For Summary
SUMMARY

The discussion establishes that $\sin 10^\circ$ is an irrational number by demonstrating that the cubic equation $8x^3 - 6x + 1 = 0$ has no rational solutions. By substituting $y = 2x$, the transformed equation $y^3 - 3y + 1 = 0$ also lacks integer solutions, confirming the irrationality of $y$ and consequently $x$. Furthermore, it is shown that $\sin 10^\circ$ and $\cos 10^\circ$ cannot both be rational, as this would imply the existence of a Pythagorean triple with 1 as a member, which is impossible.

PREREQUISITES
  • Understanding of trigonometric functions and their properties
  • Familiarity with polynomial equations and their solutions
  • Knowledge of Gauss's lemma regarding rational and irrational numbers
  • Basic concepts of Pythagorean triples
NEXT STEPS
  • Study the derivation and implications of the cubic equation $y^3 - 3y + 1 = 0$
  • Explore the properties of irrational numbers and their proofs
  • Investigate the relationship between trigonometric functions and Pythagorean triples
  • Learn about Gauss's lemma and its applications in number theory
USEFUL FOR

Mathematicians, students studying number theory, and anyone interested in the properties of trigonometric functions and irrational numbers.

kaliprasad
Gold Member
MHB
Messages
1,333
Reaction score
0
Show that $\sin\,10^\circ$ is irrational
 
Mathematics news on Phys.org
kaliprasad said:
Show that $\sin\,10^\circ$ is irrational
[sp]Let $x = \sin10^\circ$. The formula for $\sin3\theta$ shows that $3x - 4x^3 = \sin30^\circ = \frac12.$ So $8x^3 - 6x + 1 = 0.$ If $y=2x$ then $y^3 - 3y + 1 = 0.$ That cubic equation has no integer solutions, so by Gauss's lemma it has no rational solutions. Hence $y$, and therefore $x$, is irrational.

[/sp]
 
kaliprasad said:
Show that $\sin\,10^\circ$ is irrational

Could it be this simple?

Consider right triangle $ABC$ with $\angle{A}=80^\circ$, $\angle{B}=10^\circ$ and $\overline{AC}=1$. Then $c\sin10^\circ=1\Rightarrow\sin10^\circ=\frac1c$. As there is no Pythagorean triple with $1$ as a member, $c$ must be irrational, hence $\sin10^\circ$ is irrational.
 
greg1313 said:
Could it be this simple?

Consider right triangle $ABC$ with $\angle{A}=80^\circ$, $\angle{B}=10^\circ$ and $\overline{AC}=1$. Then $c\sin10^\circ=1\Rightarrow\sin10^\circ=\frac1c$. As there is no Pythagorean triple with $1$ as a member, $c$ must be irrational, hence $\sin10^\circ$ is irrational.
[sp]Not quite that simple! What that argument shows is that $\sin10^\circ$ and $\cos10^\circ$ cannot both be rational. In that case, there would indeed have to be a Pythagorean triple with $1$ as a member.

The case of $\sin30^\circ$ shows that $\sin x$ can be of the form $\frac1n$ where $n$ is an integer. But of course $\cos30^\circ = \frac{\sqrt3}2$ which is not rational.

[/sp]
 
Opalg said:
[sp]Not quite that simple! What that argument shows is that $\sin10^\circ$ and $\cos10^\circ$ cannot both be rational. In that case, there would indeed have to be a Pythagorean triple with $1$ as a member.

The case of $\sin30^\circ$ shows that $\sin x$ can be of the form $\frac1n$ where $n$ is an integer. But of course $\cos30^\circ = \frac{\sqrt3}2$ which is not rational.

[/sp]

By that logic that would hold for any angle, wouldn't it?
But it doesn't, since with $\alpha=\arctan(3/4)$ both $\cos\alpha$ and $\sin\alpha$ are rational.
 
I like Serena said:
By that logic that would hold for any angle, wouldn't it?
But it doesn't, since with $\alpha=\arctan(3/4)$ both $\cos\alpha$ and $\sin\alpha$ are rational.
[sp]It holds for $\alpha=\arctan(3/4)$ because $(3,4,5)$ is a Pythagorean triple. The point is that there is no such triple having $1$ as one of its elements.

[/sp]
 
I still don't see why what I wrote is incorrect. $c$ is irrational, so must be $\sin10^\circ$.
 
Opalg said:
[sp]It holds for $\alpha=\arctan(3/4)$ because $(3,4,5)$ is a Pythagorean triple. The point is that there is no such triple having $1$ as one of its elements.

[/sp]

Right.
So what that means is that there is no angle $\alpha$ that specifically has $\sin\alpha=\frac 1n$ (rational) and also a rational $\cos\alpha$.

greg1313 said:
I still don't see why what I wrote is incorrect. $c$ is irrational, so must be $\sin10^\circ$.

How do you know that $c$ is irrational?
 
Well, I can see that we have

$$\text{something}=\frac{1}{\text{something irrational}}\implies\text{ something is irrational}$$

Correct? How does the RHS being rational even enter into the conversation?

Thanks.
 

Similar threads

  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 27 ·
Replies
27
Views
3K
  • · Replies 31 ·
2
Replies
31
Views
4K
  • · Replies 28 ·
Replies
28
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
16
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K