MHB Show that the five roots are not real

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Roots
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Hi MHB,

I have encountered a problem recently for which I couldn't think of even a single method to attempt it, and this usually is an indicator that a problem really isn't up my alley. That notwithstanding, I don't wish yet to concede defeat. Could someone please show me at least some idea on how to crack it? Thanks in advance.

Problem:

Show that the five roots of the quintic $a_5x^5+a_4x^4+a_3x^3+a_2x^2+a_1x+a_0=0$ are not all real if $2a_4^2<5a_5a_3$.
 
Mathematics news on Phys.org
anemone said:
Hi MHB,

I have encountered a problem recently for which I couldn't think of even a single method to attempt it, and this usually is an indicator that a problem really isn't up my alley. That notwithstanding, I don't wish yet to concede defeat. Could someone please show me at least some idea on how to crack it? Thanks in advance.

Problem:

Show that the five roots of the quintic $a_5x^5+a_4x^4+a_3x^3+a_2x^2+a_1x+a_0=0$ are not all real if $2a_4^2<5a_5a_3$.

I would prove it by contradiction
Without loss of generality let a5 = 1
Let all roots be real y1, y2,y3,y4,y5

Then a4^2= (y1+y2+y3+y4+y5)^2 = y1^2 + y2^2 + y3^2 + y4^2 + y5^2) + 2a3 because a3 consists of product of 2 elements that are separate

or
2a4^2 = 4a3 + 2y1^2 + 2y2^2 + 2y3^2 + 2y4^2 + 2y5^2)
=4a3 + ½(4y1^2 + 4y2^2 + 4y3^2 + 4y4^2 + 4y5^2)
= 4a3 + ½( sum (( ym – yn)^2 + 2ymyn))) m is not n
>= 4a3 + a3 as sum (ym-yn)^2 >=0 and sum ymyn= a3
>= 5a3

So if all roots are real the 2a4^2 >= 5a3

Or if the condition is not satisfied then all root cannot be real
 
Last edited:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
2
Views
1K
Replies
2
Views
3K
Replies
9
Views
3K
Replies
3
Views
3K
Back
Top