MHB Show that there are points Q,R on C such that the triangle PQR is equilateral.

  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Points Triangle
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Let $C$ be a smooth closed curve (no corners) in the plane with a convex interior,
and $P$ a given point on $C$. Show that there are points $Q,R$ on $C$ such that the
triangle $PQR$ is equilateral.
 
Mathematics news on Phys.org
Suggested solution:

Let an angle of $60^{\circ}$ revolve counter-clockwise about $P$, with initial position of one of the arms tangent to $C$ at $P$. The intercepts of the two arms are initially $0$ and some $q > 0$. Turn the angle until the other arm becomes tangent to $C$, and the intercepts are now some $r > 0$ and $0$. Hence the difference of the intercepts changes from: $0-q < 0$ to $r-0 > 0$. By continuity there is a position of the two arms $\overline{PQ}, \overline{PR}$ where $|PQ| = |PR|$, hence the triangle $PQR$ is equilateral.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top