Show the formula which connects the adjoint representations

Click For Summary
The discussion centers on deriving the formula connecting adjoint representations in the context of Lie groups and their algebras. A user attempts to express the exponential function in terms of power series but struggles with the resulting sums. Another participant clarifies that the relationship between the adjoint representations is established through the formula Ad(exp(x)) = exp(ad(X)), linking the Lie group and its algebra. They suggest that the exercise may involve matrix calculations and emphasize the importance of patience in manipulating the sums. This highlights the complexity of the topic while providing a foundational understanding of the adjoint representation.
Mutatis
Messages
42
Reaction score
0
Homework Statement
Show that ##e^\left(-Â\right)*\hat B*e^Â = \hat B - \left[ Â, \hat B \right] + \frac {1} {2!} *\left[ \hat A, \left[ Â, \hat B \right] \right] - ... ##
Relevant Equations
## e^x=\sum_{n=0}^\infty \frac {x^n} {n!} ##
That's my attempting: first I've wrote ##e## in terms of the power series, but then I don't how to get further than this $$ \sum_{n=0}^\infty (-1)^n \frac {Â^n} {n!} \hat B \sum_{n=0}^\infty \frac {Â^n} {n!} = \sum_{n=0}^\infty (-1)^n \frac {Â^2n} {\left( n! \right) ^2} $$. I've alread tried to expand it but it leads me to a weird sum of terms...
 
Physics news on Phys.org
Mutatis said:
That's my attempting: first I've wrote ##e## in terms of the power series, but then I don't how to get further than this $$ \sum_{n=0}^\infty (-1)^n \frac {Â^n} {n!} \hat B \sum_{n=0}^\infty \frac {Â^n} {n!} = \sum_{n=0}^\infty (-1)^n \frac {Â^2n} {\left( n! \right) ^2} $$. I've alread tried to expand it but it leads me to a weird sum of terms...
Where did you get this from? The proof is normally not done by direct computation; and it is usually not homework.
 
Well, this is one exercise from my quantum mechanics class...
 
Looks a bit troublesome to do it this way. The way I know is (details aside):

Given a Lie group ##G## and its Lie algebra ##\mathfrak{g}##.

##G## operates on itself via conjugation ##x.y :=xyx^{-1}## which gives rise to
##G## operates on ##\mathfrak{g}## by ##x.Y := \operatorname{Ad}(x)(Y) = x Y x^{-1}## which gives rise to
##\mathfrak{g}## operates on itself by ##X.Y := \operatorname{ad}(X)(Y) = [X,Y]##

Now the two adjoint representations are related by ##\operatorname{Ad}(\exp(x)) = \exp(\operatorname{ad}(X))## since the exponential function is basically the integration from the tangent space, the Lie algebra ##\mathfrak{g}##, back into the Lie group ##G##.

What you have here is exactly this formula:
\begin{align*}
\operatorname{Ad}(\exp(-\hat A))(\hat B) &= \exp(-\hat A) \hat B \exp(\hat A) \\
&= \hat B - [\hat A, \hat B] +\frac{1}{2!} [\hat A,[\hat A,\hat B]] \mp \cdots \\
&= \left(1 + \operatorname{ad}(-\hat A) + \frac{1}{2!} (\operatorname{ad}(-\hat A))^2 \mp \cdots \right)(\hat B)\\
&= \exp(\operatorname{ad}(-\hat A)) (\hat B)
\end{align*}
If it is only an exercise in calculation with matrices, then you will probably have to use ##\operatorname{ad}(-\hat A)(\hat B) = [-\hat A,\hat B] = -\hat A \hat B +\hat B \hat A## and a bit of patience multiplying those sums.
 
Last edited:
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
8
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K