What Are the Properties of the Maps Defined in the Content?

  • Context: MHB 
  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Properties
Click For Summary
SUMMARY

The discussion focuses on the properties of the map defined as $\text{cost}_a:\mathbb{R}\rightarrow \mathbb{R}$, where it is established that for any real numbers $a$ and $b$, the equation $\text{cost}_a + \text{cost}_b = \text{cost}_{a+b}$ holds true. Additionally, it is proven that $\lambda \text{cost}_a = \text{cost}_{\lambda a}$ for any real number $\lambda$. Other properties discussed include $-(f+g) = (-f) + (-g)$, $f + f = 2f$, and $f + (-f) = \text{cost}_0$. The participants confirm the correctness of these properties and express a desire for further improvement.

PREREQUISITES
  • Understanding of real-valued functions and mappings
  • Familiarity with basic algebraic operations on functions
  • Knowledge of linear transformations in mathematics
  • Proficiency in mathematical notation and expressions
NEXT STEPS
  • Explore the implications of linearity in function mappings
  • Study the properties of linear transformations in vector spaces
  • Investigate the concept of zero maps and their significance in functional analysis
  • Learn about the applications of cost functions in optimization problems
USEFUL FOR

Mathematicians, students studying real analysis, and anyone interested in the properties of mathematical functions and mappings.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Let $a\in \mathbb{R}$. We define the map $\text{cost}_a:\mathbb{R}\rightarrow \mathbb{R}$, $x\mapsto a$. We define also $-f:=(-1)f$ for a map $f:\mathbb{R}\rightarrow \mathbb{R}$.

Let $f:\mathbb{R}\rightarrow\mathbb{R}$ be a map and $\lambda\in \mathbb{R}$.

Show that:

  1. for $a,b\in \mathbb{R}$ it holds that $\text{cost}_a+\text{cost}_b=\text{cost}_{a+b}$.
  2. for $a\in \mathbb{R}$ it holds that $\lambda\text{cost}_a=\text{cost}_{\lambda a}$.
  3. $-(f+g)=(-f)+(-g)$.
  4. $f+f=2f$.
  5. $f+(-f)=\text{cost}_0$.

Could you give me a hint how we could these? Aren't all of these trivial? (Wondering)
 
Physics news on Phys.org
Hey mathmari!

I guess the first one can be shown as follows:
$$\DeclareMathOperator{\cost}{cost}
\forall a,b\in\mathbb R,\,\forall x\in\mathbb R : (\cost_a+\cost_b)(x)=\cost_a(x)+\cost_b(x)=a+b=\cost_{a+b}(x)$$
Therefore:
$$\forall a,b\in\mathbb R : \cost_a+\cost_b=\cost_{a+b}$$
(Thinking)

And yes, it does look rather trivial. (Tauri)
 
Klaas van Aarsen said:
I guess the first one can be shown as follows:
$$\DeclareMathOperator{\cost}{cost}
\forall a,b\in\mathbb R,\,\forall x\in\mathbb R : (\cost_a+\cost_b)(x)=\cost_a(x)+\cost_b(x)=a+b=\cost_{a+b}(x)$$
Therefore:
$$\forall a,b\in\mathbb R : \cost_a+\cost_b=\cost_{a+b}$$
(Thinking)

Ahh ok! (Malthe)

In the same way we could show also the other ones, or not? (Wondering)

$$2. \ \ \ \DeclareMathOperator{\cost}{cost}
\forall a\in\mathbb R,\,\forall x\in\mathbb R : \lambda \cost_a(x)=\lambda a=\cost_{\lambda a}(x)$$
Therefore:
$$\forall a\in\mathbb R : \lambda\cost_a=\cost_{\lambda a}$$

$$3. \ \ \ \forall x\in\mathbb R : -(f+g)(x)=(-1)(f+g)(x)=(-1)(f(x)+g(x))=(-1)f(x)+(-1)g(x)=(-f)(x)+(-g)(x)$$
Therefore:
$$-(f+g)=(-f)+(-g)$$

$$4. \ \ \ \forall x\in\mathbb R : (f+f)(x)=f(x)+f(x)=2f(x)$$
Therefore:
$$f+f=2f$$

$$5. \ \ \ \forall x\in\mathbb R : (f+(-f))(x)=(f+(-1)f)(x)=f(x)+(-1)f(x)=(1-1)f(x)=0\cdot f(x)=0=\text{cost}_0(x)$$
Therefore:
$$f+(-f)=\text{cost}_0$$ Is everything correct? Could we improve something? (Wondering)
 
Looks all good to me. (Nod)
 
Klaas van Aarsen said:
Looks all good to me. (Nod)

Great! Thank you! (Yes)
 

Similar threads

  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 11 ·
Replies
11
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
20
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K