MHB Show the result of the sum of a series isn't a prime number

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Prime Series Sum
AI Thread Summary
For any odd integer m ≥ 5, the expression involving binomial coefficients and powers of 5 is shown to not yield a prime number. Participants in the discussion express confusion and seek clarification on the proof, with some admitting to misreading the series. A contributor named kaliprasad is acknowledged for their correct approach, while others reflect on the learning process through mistakes. The conversation emphasizes the importance of collaboration in solving complex mathematical problems. Ultimately, the goal remains to establish a definitive conclusion regarding the non-primality of the series result.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Show that for an odd integer $m\ge 5$,

$\displaystyle {m\choose 0} 5^{m-1}-{m\choose 1} 5^{m-2}+{m\choose 2} 5^{m-3}-\cdots+{m\choose m-1} $

is not a prime number.
 
Mathematics news on Phys.org
anemone said:
Show that for an odd integer $m\ge 5$,

$\displaystyle {m\choose 0} 5^{m-1}-{m\choose 1} 5^{m-2}+{m\choose 2} 5^{m-3}-\cdots+{m\choose m-1} $

is not a prime number.
$\displaystyle \begin{align*} S &= \sum_{r = 0}^{m-1}{ {m\choose{r}} 5^{m - r - 1} } \\ 5S &= 5\sum_{r = 0}^{m-1}{ {m\choose{r}} 5^{m-r-1} } \\ 5S &= \sum_{r = 0}^{m-1}{ {m\choose{r}} 5^{m-r} } \\ 5S &= \sum_{r = 0}^{m - 1}{ \left[ {m\choose{r}}5^{m-r} \cdot 1^r \right] } \\ 5S + 1 &= \sum_{r = 0}^{m - 1}{ \left[ {m\choose{r}} 5^{m-r} \cdot 1^r \right] } + 1 \\ 5S + 1 &= \sum_{r = 0}^{m - 1}{ \left[ {m\choose{r}} 5^{m - r} \cdot 1^r \right] } + {m\choose{m}} 5^0 \cdot 1^m \\ 5S + 1 &= \sum_{r = 0}^m{ {m\choose{r}} 5^{m - r} \cdot 1^r } \\ 5S + 1 &= \left( 5 + 1 \right) ^m \\ 5S + 1 &= 6^m \\ 5S &= 6^m - 1 \\ S &= \frac{6^m - 1}{5} \end{align*}$

So now we have to prove that $\displaystyle \begin{align*} \frac{6^m - 1}{5} \end{align*}$ is not prime if m is some odd integer greater than or equal to 5. I'm leaning towards induction...

Base step: m = 5

$\displaystyle \begin{align*} \frac{6^5 - 1}{5} &= \frac{7776 - 1}{5} \\ &= \frac{7775}{5} \\ &= 1555 \\ &= 5 \cdot 311 \end{align*}$

This is clearly not prime, so the base step is proven.

Now for the inductive step, assume that the statement is true for m = 2k + 1 (where k is another integer $\displaystyle \begin{align*} \geq 2 \end{align*}$, use this to prove the statement is true for m = 2k + 3.

So we assume $\displaystyle \begin{align*} \frac{6^{2k + 1} - 1}{5} \end{align*}$ is not prime, then

$\displaystyle \begin{align*} \frac{6^{2k + 3} - 1}{5} &= \frac{6^2 \cdot 6^{2k + 1} - 1}{5} \\ &= \frac{36 \cdot 6^{2k + 1} - 36 + 35}{5} \\ &= \frac{36 \left( 6^{2k + 1} - 1 \right) + 35}{5} \\ &= 36 \left( \frac{6^{2k + 1} - 1 }{5} \right) + 7 \end{align*}$

I'm not sure how to prove that this is not prime now...
 
Last edited by a moderator:
anemone said:
Show that for an odd integer $m\ge 5$,

$\displaystyle {m\choose 0} 5^{m-1}-{m\choose 1} 5^{m-2}+{m\choose 2} 5^{m-3}-\cdots+{m\choose m-1} $

is not a prime number.

Notice that the given sum can be written as:
$${m\choose m}5^{m-1}-{m\choose m-1} 5^{m-2}+{m\choose m-2} 5^{m-3}-\cdots+{m\choose 1}$$
Since
$$(1+x)^m={m\choose 0}+{m\choose 1}x+{m\choose 2}x^2+\cdots +{m\choose m}x^m$$
$$\Rightarrow \frac{(1+x)^m}{x}=\frac{{m\choose 0}}{x}+{m\choose 1}+{m\choose 2}x+\cdots +{m\choose m}x^{m-1}$$
Substitute $x=-5$ to get,
$${m\choose 1}-{m\choose 2}\cdot 5+\cdots +{m\choose m}5^{m-1}=\frac{1}{5}+\frac{(1-5)^m}{-5}$$
The LHS is the summation (S) given in the question. Hence,
$$S=\frac{4^m+1}{5}=\frac{2^{2m}+1}{5}$$
For odd $m\geq 5$, $2^{2m}$ always ends with unit digit 4, hence, $2^{2m}+1$ is always divisible by 5 which proves that the given summation is not prime.
 
Pranav said:
Notice that the given sum can be written as:
$${m\choose m}5^{m-1}-{m\choose m-1} 5^{m-2}+{m\choose m-2} 5^{m-3}-\cdots+{m\choose 1}$$
Since
$$(1+x)^m={m\choose 0}+{m\choose 1}x+{m\choose 2}x^2+\cdots +{m\choose m}x^m$$
$$\Rightarrow \frac{(1+x)^m}{x}=\frac{{m\choose 0}}{x}+{m\choose 1}+{m\choose 2}x+\cdots +{m\choose m}x^{m-1}$$
Substitute $x=-5$ to get,
$${m\choose 1}-{m\choose 2}\cdot 5+\cdots +{m\choose m}5^{m-1}=\frac{1}{5}+\frac{(1-5)^m}{-5}$$
The LHS is the summation (S) given in the question. Hence,
$$S=\frac{4^m+1}{5}=\frac{2^{2m}+1}{5}$$
For odd $m\geq 5$, $2^{2m}$ always ends with unit digit 4, hence, $2^{2m}+1$ is always divisible by 5 which proves that the given summation is not prime.

I beg to disagree

we know 5S = 2^(2m) + 1 is not a prime which is obvious but we need to prove S and not 5S is not prime
 
kaliprasad said:
I beg to disagree

we know 5S = 2^(2m) + 1 is not a prime which is obvious but we need to prove S and not 5S is not prime

Ah yes, you are right. :o
 
m is odd

so $2^{2m} + 1 = (2^m)^2 + 1 = (2^m)^2 + 1 + 2 *2^m) - 2 * 2^m)$
= $(2^m + 1)^2 - (2 ^{(m+1)/2})^2$

smaller factor = $2^m - 2^{(m+1)/2} + 1$ ( as m is odd m+1 is even
> 5 for m >= 5 hence it is not prime
 
It appears that I have misread the original series, hopefully my approach will work with the correct one...

$\displaystyle \begin{align*} S &= \sum_{r = 0}^{m-1}{ {m\choose{r}} 5^{m - r - 1} \left( -1 \right) ^r } \\ 5S &= 5\sum_{r = 0}^{m-1}{ {m\choose{r}} 5^{m-r-1} \left( - 1 \right) ^r } \\ 5S &= \sum_{r = 0}^{m-1}{ {m\choose{r}} 5^{m-r} \left( -1 \right) ^r} \\ 5S - 1 &= \sum_{r = 0}^{m-1} { \left[ {m\choose{r}} 5^{m - r} \left( -1 \right) ^r \right] } - 1 \\ 5S - 1 &= \sum_{r = 0}^{m - 1}{ \left[ {m\choose{r}} 5^{m-r} \left( -1 \right) ^r \right] } + {m\choose{m}}5^0\left( -1 \right) ^m \\ 5S - 1 &= \sum_{r = 0}^m{ {m\choose{r}} 5^{m-r} \left( -1 \right) ^r } \\ 5S- 1 &= \left( 5 - 1 \right) ^m \\ 5S - 1 &= 4^m \\ 5S &= 4^m + 1 \\ S &= \frac{4^m + 1}{5} \end{align*}$

So now we have to prove that $\displaystyle \begin{align*} \frac{4^m + 1}{5} \end{align*}$ is not prime if m is some odd integer greater than or equal to 5. I'm leaning towards induction...

Base step: m = 5

$\displaystyle \begin{align*} \frac{4^5 + 1}{5} &= \frac{1024 + 1}{5} \\ &= \frac{1025}{5} \\ &= 205 \\ &= 5 \cdot 41 \end{align*}$

This is clearly not prime, so the base step is proven.

Now for the inductive step, assume that the statement is true for m = 2k + 1 (where k is another integer $\displaystyle \begin{align*} \geq 2 \end{align*}$, use this to prove the statement is true for m = 2k + 3.

So we assume $\displaystyle \begin{align*} \frac{4^{2k + 1} + 1}{5} \end{align*}$ is not prime, then

$\displaystyle \begin{align*} \frac{4^{2k + 3} + 1}{5} &= \frac{4^2 \cdot 4^{2k + 1} + 1}{5} \\ &= \frac{16 \cdot 4^{2k + 1} + 16 - 15}{5} \\ &= \frac{16 \left( 4^{2k + 1} + 1 \right) - 15}{5} \\ &= 16 \left( \frac{4^{2k + 1} + 1 }{5} \right) - 3 \end{align*}$

I'm still hitting a brick wall, can someone please help me finish?
 
Prove It said:
It appears that I have misread the original series, hopefully my approach will work with the correct one...

$\displaystyle \begin{align*} S &= \sum_{r = 0}^{m-1}{ {m\choose{r}} 5^{m - r - 1} \left( -1 \right) ^r } \\ 5S &= 5\sum_{r = 0}^{m-1}{ {m\choose{r}} 5^{m-r-1} \left( - 1 \right) ^r } \\ 5S &= \sum_{r = 0}^{m-1}{ {m\choose{r}} 5^{m-r} \left( -1 \right) ^r} \\ 5S - 1 &= \sum_{r = 0}^{m-1} { \left[ {m\choose{r}} 5^{m - r} \left( -1 \right) ^r \right] } - 1 \\ 5S - 1 &= \sum_{r = 0}^{m - 1}{ \left[ {m\choose{r}} 5^{m-r} \left( -1 \right) ^r \right] } + {m\choose{m}}5^0\left( -1 \right) ^m \\ 5S - 1 &= \sum_{r = 0}^m{ {m\choose{r}} 5^{m-r} \left( -1 \right) ^r } \\ 5S- 1 &= \left( 5 - 1 \right) ^m \\ 5S - 1 &= 4^m \\ 5S &= 4^m + 1 \\ S &= \frac{4^m + 1}{5} \end{align*}$

So now we have to prove that $\displaystyle \begin{align*} \frac{4^m + 1}{5} \end{align*}$ is not prime if m is some odd integer greater than or equal to 5. I'm leaning towards induction...

Base step: m = 5

$\displaystyle \begin{align*} \frac{4^5 + 1}{5} &= \frac{1024 + 1}{5} \\ &= \frac{1025}{5} \\ &= 205 \\ &= 5 \cdot 41 \end{align*}$

This is clearly not prime, so the base step is proven.

Now for the inductive step, assume that the statement is true for m = 2k + 1 (where k is another integer $\displaystyle \begin{align*} \geq 2 \end{align*}$, use this to prove the statement is true for m = 2k + 3.

So we assume $\displaystyle \begin{align*} \frac{4^{2k + 1} + 1}{5} \end{align*}$ is not prime, then

$\displaystyle \begin{align*} \frac{4^{2k + 3} + 1}{5} &= \frac{4^2 \cdot 4^{2k + 1} + 1}{5} \\ &= \frac{16 \cdot 4^{2k + 1} + 16 - 15}{5} \\ &= \frac{16 \left( 4^{2k + 1} + 1 \right) - 15}{5} \\ &= 16 \left( \frac{4^{2k + 1} + 1 }{5} \right) - 3 \end{align*}$

I'm still hitting a brick wall, can someone please help me finish?

I do not think for proving

the number is composite can be proved by Mathemetical induction unless they have same common factor. So factoring is a way out
 
kaliprasad said:
I do not think for proving

the number is composite can be proved by Mathemetical induction unless they have same common factor. So factoring is a way out

But like you said,

We need a common factor, that means we will need to show that $\displaystyle \begin{align*} \frac{4^{2k+1} + 1}{5} \end{align*}$ is a multiple of 3. Is this possible?
 
  • #10
Thanks to all who chimed in on this challenge problem.

@kaliprasad, your method is right and correct, well done, kali!

@Pranav, I think we all learn through mistakes, don't we?:)

@Prove It, I don't know if kaliprasad is right or wrong in his judgment that this could not be proved to be right by the induction method, but I hope you will get a definite yes or no soon, either by receiving more convincing replies or by proving it later yourself. :)
 
  • #11
Prove It said:
But like you said,

We need a common factor, that means we will need to show that $\displaystyle \begin{align*} \frac{4^{2k+1} + 1}{5} \end{align*}$ is a multiple of 3. Is this possible?

I do not know why you say multiple of 3. may be it is a typo or a random number but

$(4^5+1)/5$ = 5 * 41
$(4^7+1)/5$ = 29 * 113
$(4^9+1)/5$ = 13 * 37 * 109
and we see that there is no commion factor
 
Back
Top