Is the Function F(x, y) Continuous at All Points?

  • Thread starter Thread starter tomboi03
  • Start date Start date
  • Tags Tags
    Continuous
Click For Summary
The function F(x, y) is defined piecewise, and its continuity is analyzed in terms of its behavior as (x, y) approaches (0, 0). It is established that F is continuous in each variable separately, but not overall continuous, as demonstrated by the differing limits along different paths approaching (0, 0). The discussion highlights the importance of continuity in homotopies and raises questions about conditions that could ensure overall continuity if each variable is continuous. Additionally, the implications of continuity in mathematical constructs like homotopies are explored, emphasizing the need for a deeper understanding of continuity in multivariable functions. The conversation reflects ongoing inquiries into the nature of continuity in mathematical analysis.
tomboi03
Messages
74
Reaction score
0
Let F: R x R -> R be defined by the equation
F(x x y) = { xy/(x^2 + y^2) if x x y \neq 0 x 0 ; 0 if x x y = 0 x 0
a. Show that F is continuous in each variable separately.
b. Compute the function g: R-> R defined by g(x) = F(x x x)
c. Show that F is not continuous.

I know how to do part a...
but I'm not sure how to do b or c.

If you can help me out that would be great! thank you!
 
Physics news on Phys.org
Well, b seems rather straightforward, just plug it in.

For c, you could show that there is a point for which the limit value depends on the path you take. For example, showing that
\lim_{x \to 0} F(x, 0) \neq \lim_{y \to 0} F(0, y)
would prove that F is not continuous at (0, 0) because then it shouldn't matter how you get to (0, 0). I think that b should give you a hint on which point and paths to consider :)
 
Sorry to rehash something so old; I was doing a search for the general situation;
wonder if someone knows the answer:

An important/interesting question would be if we can add some new condition
so that if f(x,.) and f(.,y) are continuous, then so is f(x,y).

For one thing, the continuity of maps f:XxY-->Z is often used in constructing
homotopies; I have never seen the issue of why/when these homotopies are
continuous.
 
Sorry, I can't access the 'Edit' button for some reason.

A standard counter to having a function beeing continuous in each variable, yet
not overall continuous is the one given by tomboi03.

My point is that a homotopy between functions f,g, is defined to be a _continuous_ map H(x,t) with H(x,0)=f and H(x,1)=g. Since we cannot count on H(x,t) being continuous when each of H(x,.) and H(.,y) is continuous :what kind of result do we use to show that our map H(x,t) is continuous? Do we use the 'good-old' inverse image of an open set is open , or do we use the sequential continuity result that [{x_n}->x ] ->[f(x_n)=f(x)]
(with nets if necessary, i.e., if XxI is not 1st-countable)?

I saw a while back an interesting argument that if continuity on each variable alone
was enough to guarantee continuity, then every space would have trivial fundamental group:

e.g, for S^1, use H(e^i*2Pi*t,s) :=e^i2Pi(t)^s
 
We all know the definition of n-dimensional topological manifold uses open sets and homeomorphisms onto the image as open set in ##\mathbb R^n##. It should be possible to reformulate the definition of n-dimensional topological manifold using closed sets on the manifold's topology and on ##\mathbb R^n## ? I'm positive for this. Perhaps the definition of smooth manifold would be problematic, though.

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
991
  • · Replies 2 ·
Replies
2
Views
2K
Replies
21
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 10 ·
Replies
10
Views
2K