B Showing that a sequence of supremums of a sequence has these two properties

  • B
  • Thread starter Thread starter Eclair_de_XII
  • Start date Start date
  • Tags Tags
    Properties Sequence
Click For Summary
The discussion centers on proving properties of a sequence of supremums, specifically addressing the relationships between terms in the sequence. It is established that if a term in the sequence is less than another, it implies a relationship between their supremums. A key point is that a decreasing sequence of real numbers, if not bounded below, cannot converge, leading to the conclusion that it must converge to its infimum. The conversation highlights the need for clarity in proofs, suggesting that simpler arguments can effectively demonstrate the necessary properties. Overall, the discussion emphasizes the importance of understanding the definitions and relationships within sequences and their supremums.
Eclair_de_XII
Messages
1,082
Reaction score
91
TL;DR
Let ##\{a_n\}## be a sequence in ##\mathbb{R}##. Let ##A_k:=\sup\{a_n:n\geq k\}## and suppose that ##\{A_k\}## converges to some real number ##\lambda##. Show that:

(1) ##A_k## is a decreasing sequence
(2) ##A_k\geq \lambda## for all ##k##
===(1)===
Let ##n\in \mathbb{N}##. Express ##A_n## and ##A_{n+1}## as:

##A_n=\sup\{a_n,a_{n+1},\ldots\}##
##A_{n+1}=\sup\{a_{n+1},\ldots\}##

Suppose for some ##m\geq {n+1}##, ##a_m=A_{n+1}##. By definition, ##a_m\geq a_k## for ##k\geq {n+1}##.
If ##a_n<a_m##, then ##a_m\geq a_k## for ##k\geq n+1## and ##k=n##. Hence, ##a_m=A_n##.
Now suppose that ##a_n\geq a_m##. Then ##a_n\geq a_m \geq a_k## for ##k\geq {n+1}##. Hence, ##A_n=a_n\geq a_m = A_{n+1}##

===(2)===
Fact: A decreasing sequence of real numbers bounded from below must converge to its infimum.
We prove the second fact by proving that if ##A_k## is not bounded from below, it cannot converge to ##\lambda##.

Assume ##\{A_k\}## is not bounded from below. Then for all real numbers, particularly, ##\lambda##, there is an integer ##m## such that ##A_m<-|\lambda|##. Choose ##\epsilon=-A_m-|\lambda|## and let ##N\in \mathbb{N}##. Then whenever ##n\geq N##:

\begin{align*}
|A_n-\lambda|&\geq&|A_n|-|\lambda|\\
&\geq&-A_m-|\lambda|\\
&=&\epsilon
\end{align*}

if ##N>m##. If ##m\geq N##, choose ##n=m##:

\begin{align*}
|A_m-\lambda|&\geq&|A_m|-|\lambda|\\
&\geq&-A_m-|\lambda|\\
&=&\epsilon
\end{align*}

Hence, ##A_k## must be bounded from below. Since it is decreasing, it must converge and it converges to its infimum. It also converges to ##\lambda##. Any convergent sequence cannot converge to two different numbers, which means that ##\lambda## is the infimum.
 
Physics news on Phys.org
For step 1, your proof is wrong because in general ##A_n## does not have to be equal to any of the ##a_i##s. For example if ##a_i=1+1/i## for all i, then ##A_n=1## for all n.Your proof really shouldn't involve any complicated inequalities. ##A_n## is an upper bound of the set that ##A_{n+1}## is the supremum of. Why?
 
Office_Shredder said:
in general ##A_i## does not have to be equal to any of the ##a_i##s.

Oh, I had overlooked that possibility.

Office_Shredder said:
For example if ##a_i=1+1/i## for all i, then ##A_n=1## for all n.

Surely, you mean ##a_i=1-1/i##?

Office_Shredder said:
Why?

Because ##A_n## is an upper bound for the set containing ##a_k## for ##k\geq n+1## in addition to the set containing ##a_n##?
 
Try to write down a simple informal statement of why (1) and (2) hold. Once you have that, you can formalise a proof.
 
Eclair_de_XII said:
Surely, you mean ##a_i=1-1/i##?

I did indeed.

Because ##A_n## is an upper bound for the set containing ##a_k## for ##k\geq n+1## in addition to the set containing ##a_n##?

Yes. Since ##A_n## is an upper bound for a set which ##A_{n+1}## is the supremum, it must be at least as large as ##A_{n+1}## by definition of the supremum. That gives you part 1.

For part 2, your proof is overly complicated and starts by assuming ##A_n## is unbounded (though I don't think it's necessary for the rest of your proof). Try something simpler: if ##A_k## is decreasing, and there is some ##n## for which ##A_n < \lambda-\epsilon##, then every other ##A_k## for ##k>n## must be below ##A_n## which gives you a contradiction to the fact that ##\lambda## is the limit. You don't need to prove that it has some other limit, just that it doesn't match the statement you were given.
 
  • Like
Likes Eclair_de_XII