Undergrad Showing that operators follow SU(2) algebra

Click For Summary
To verify that the raising and lowering operators for two quantum oscillators follow the SU(2) algebra, one should express the operators T_1 and T_2 in terms of T_- and T_+. The SU(2) commutation relation is defined as [T_1, T_2] = i ε^ijk T_3. The discussion emphasizes the importance of distinguishing between the SU(2) group and its corresponding algebra, denoted as \mathfrak{su}(2). The provided basis transformations link the operators to the Pauli matrices, which can aid in the verification process. Understanding these relationships is crucial for confirming the algebraic structure.
graviton_10
Messages
5
Reaction score
1
For two quantum oscillators, I have raising and lowering operators
gif.gif
and
gif.gif
, and the number operator
gif.gif
. I need to check if operators below follow
gif.gif
commutation relations.

gif.gif


gif.gif


Now as far as I know, SU(2) algebra commutation relation is [T_1, T_2] = i ε^ijk T_3. So, should I just get T_1 and T_2 in terms of T_- and T_+ and then try to check if I get they follow the SU(2) commutation relation?
 
Physics news on Phys.org
Just a pedantic comment but ##SU(2)## is a group, and ##\mathfrak{su}(2)## is an algebra.
 
  • Like
Likes dextercioby and DrClaude
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 19 ·
Replies
19
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 1 ·
Replies
1
Views
887
  • · Replies 18 ·
Replies
18
Views
5K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
923