I Showing that operators follow SU(2) algebra

graviton_10
Messages
5
Reaction score
1
For two quantum oscillators, I have raising and lowering operators
gif.gif
and
gif.gif
, and the number operator
gif.gif
. I need to check if operators below follow
gif.gif
commutation relations.

gif.gif


gif.gif


Now as far as I know, SU(2) algebra commutation relation is [T_1, T_2] = i ε^ijk T_3. So, should I just get T_1 and T_2 in terms of T_- and T_+ and then try to check if I get they follow the SU(2) commutation relation?
 
Physics news on Phys.org
Just a pedantic comment but ##SU(2)## is a group, and ##\mathfrak{su}(2)## is an algebra.
 
  • Like
Likes dextercioby and DrClaude
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
Back
Top