Showing $XF_{X}+YF_{Y}+ZF_{Z}=nF$ with a Homogeneous Polynomial

Click For Summary

Discussion Overview

The discussion centers around demonstrating the equality \( XF_{X}+YF_{Y}+ZF_{Z}=nF \) for a homogeneous polynomial \( F(X,Y,Z) \) of degree \( n \). Participants explore connections to Leibniz's identity and Euler's formula, considering both theoretical implications and specific polynomial forms.

Discussion Character

  • Exploratory
  • Technical explanation
  • Conceptual clarification
  • Debate/contested

Main Points Raised

  • Some participants suggest that the equality is a particular case of Leibniz's identity and provide a polynomial representation of \( F \) to support this.
  • There is a proposal to express \( F \) as a sum of terms with specific degrees, emphasizing the requirement for \( F \) to be homogeneous of degree \( n \).
  • One participant questions whether the last equality is indeed Euler's formula, indicating uncertainty about the terminology used.
  • Another participant proposes an alternative polynomial form and seeks clarification on the choice of polynomial, particularly regarding the absence of a constant term.
  • Some participants assert that the two polynomial forms discussed are equivalent but express differing views on the historical attribution of the formula to Euler or Leibniz.

Areas of Agreement / Disagreement

Participants generally agree on the connection between the equality and Leibniz's identity, but there is no consensus on the historical attribution of the formula or the specific polynomial forms to be used. The discussion remains unresolved regarding the implications of these choices.

Contextual Notes

Participants express uncertainty about the implications of the polynomial's degree and the conditions under which the equality holds, particularly in relation to the characteristic of the field.

evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hi! (Smile)

Let $F(X,Y,Z) \in \mathbb{C}[X,Y,Z]$ a homogeneous polynomial of degree $n$. Could you give me a hint how we could show the following? (Thinking)

$$XF_{X}+YF_{Y}+ZF_{Z}=nF$$
 
Physics news on Phys.org
Hi evinda,

This is a particular case of Leibniz's identity.

Call $F=\displaystyle\sum_{j=0}^{k}\lambda_{j}X^{e_{x,j}}Y^{e_{y,j}}Z^{e_{z,j}}$ where $e_{x,j}+e_{y,j}+e_{z,j}=n$ for all $j$.

Then $F_{X}=\displaystyle\sum_{j=0, \ e_{x,j}\geq 1}^{k}e_{x,j}\lambda_{j}X^{e_{x,j}-1}Y^{e_{y,j}}Z^{e_{z,j}}$

And so for $Y, Z$, now it's just a computation.

Actually, in this way you can prove that this kind of equality holds for every homogeneus polynomial (no matter how many variables) over any field $K$ while $n$ is not a divisor of $ch(K)$
 
Fallen Angel said:
Hi evinda,

This is a particular case of Leibniz's identity.

Call $F=\displaystyle\sum_{j=0}^{k}\lambda_{j}X^{e_{x,j}}Y^{e_{y,j}}Z^{e_{z,j}}$ where $e_{x,j}+e_{y,j}+e_{z,j}=n$ for all $j$.

Then $F_{X}=\displaystyle\sum_{j=0, \ e_{x,j}\geq 1}^{k}e_{x,j}\lambda_{j}X^{e_{x,j}-1}Y^{e_{y,j}}Z^{e_{z,j}}$

And so for $Y, Z$, now it's just a computation.

Actually, in this way you can prove that this kind of equality holds for every homogeneus polynomial (no matter how many variables) over any field $K$ while $n$ is not a divisor of $ch(K)$

This is the original exercise:

If $F(x,y,z) \in \mathbb{C}[x,y,z]$ is a homogeneous polynomial of degree $n$, prove the Euler's formula.

$$XF_X+YF_Y+ZF_Z=nF$$

Is the last equality Euler's formula? (Thinking)
 
Fallen Angel said:
Hi evinda,

This is a particular case of Leibniz's identity.

Call $F=\displaystyle\sum_{j=0}^{k}\lambda_{j}X^{e_{x,j}}Y^{e_{y,j}}Z^{e_{z,j}}$ where $e_{x,j}+e_{y,j}+e_{z,j}=n$ for all $j$.

Then $F_{X}=\displaystyle\sum_{j=0, \ e_{x,j}\geq 1}^{k}e_{x,j}\lambda_{j}X^{e_{x,j}-1}Y^{e_{y,j}}Z^{e_{z,j}}$

And so for $Y, Z$, now it's just a computation.

Actually, in this way you can prove that this kind of equality holds for every homogeneus polynomial (no matter how many variables) over any field $K$ while $n$ is not a divisor of $ch(K)$

Could we also take this polynomial: $F(X,Y,Z)=\sum_{i+j+k=n} a_{ijk} X^i Y^j Z^k$ ? (Thinking)

Could you explain me why we choose such a polynomial, that there is for example no constant term? (Thinking)
 
Hi evinda,

Both polynomials (yours and mine) are the same with different notation.

We choose such a polynomial because we want a homogeneus one of degree $n$.And this is more known as Euler's formula, but once a professors told me that it was originally proved by Leibniz, I haven't really found reliable information about this but I trust in my professor.
 

Similar threads

Replies
48
Views
5K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 16 ·
Replies
16
Views
4K
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
3K