MHB Showing $XF_{X}+YF_{Y}+ZF_{Z}=nF$ with a Homogeneous Polynomial

Click For Summary
The discussion focuses on proving the equality \( XF_{X}+YF_{Y}+ZF_{Z}=nF \) for a homogeneous polynomial \( F(X,Y,Z) \) of degree \( n \), which is a specific case of Leibniz's identity. Participants clarify that the polynomial can be expressed in a summation format where the exponents sum to \( n \). The computation of the partial derivatives \( F_{X}, F_{Y}, \) and \( F_{Z} \) is straightforward once the polynomial is defined. It is noted that this equality can be generalized for any homogeneous polynomial across multiple variables, provided \( n \) is not a divisor of the characteristic of the field. The discussion also touches on the historical context of the formula, attributing it to both Euler and Leibniz.
evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hi! (Smile)

Let $F(X,Y,Z) \in \mathbb{C}[X,Y,Z]$ a homogeneous polynomial of degree $n$. Could you give me a hint how we could show the following? (Thinking)

$$XF_{X}+YF_{Y}+ZF_{Z}=nF$$
 
Physics news on Phys.org
Hi evinda,

This is a particular case of Leibniz's identity.

Call $F=\displaystyle\sum_{j=0}^{k}\lambda_{j}X^{e_{x,j}}Y^{e_{y,j}}Z^{e_{z,j}}$ where $e_{x,j}+e_{y,j}+e_{z,j}=n$ for all $j$.

Then $F_{X}=\displaystyle\sum_{j=0, \ e_{x,j}\geq 1}^{k}e_{x,j}\lambda_{j}X^{e_{x,j}-1}Y^{e_{y,j}}Z^{e_{z,j}}$

And so for $Y, Z$, now it's just a computation.

Actually, in this way you can prove that this kind of equality holds for every homogeneus polynomial (no matter how many variables) over any field $K$ while $n$ is not a divisor of $ch(K)$
 
Fallen Angel said:
Hi evinda,

This is a particular case of Leibniz's identity.

Call $F=\displaystyle\sum_{j=0}^{k}\lambda_{j}X^{e_{x,j}}Y^{e_{y,j}}Z^{e_{z,j}}$ where $e_{x,j}+e_{y,j}+e_{z,j}=n$ for all $j$.

Then $F_{X}=\displaystyle\sum_{j=0, \ e_{x,j}\geq 1}^{k}e_{x,j}\lambda_{j}X^{e_{x,j}-1}Y^{e_{y,j}}Z^{e_{z,j}}$

And so for $Y, Z$, now it's just a computation.

Actually, in this way you can prove that this kind of equality holds for every homogeneus polynomial (no matter how many variables) over any field $K$ while $n$ is not a divisor of $ch(K)$

This is the original exercise:

If $F(x,y,z) \in \mathbb{C}[x,y,z]$ is a homogeneous polynomial of degree $n$, prove the Euler's formula.

$$XF_X+YF_Y+ZF_Z=nF$$

Is the last equality Euler's formula? (Thinking)
 
Fallen Angel said:
Hi evinda,

This is a particular case of Leibniz's identity.

Call $F=\displaystyle\sum_{j=0}^{k}\lambda_{j}X^{e_{x,j}}Y^{e_{y,j}}Z^{e_{z,j}}$ where $e_{x,j}+e_{y,j}+e_{z,j}=n$ for all $j$.

Then $F_{X}=\displaystyle\sum_{j=0, \ e_{x,j}\geq 1}^{k}e_{x,j}\lambda_{j}X^{e_{x,j}-1}Y^{e_{y,j}}Z^{e_{z,j}}$

And so for $Y, Z$, now it's just a computation.

Actually, in this way you can prove that this kind of equality holds for every homogeneus polynomial (no matter how many variables) over any field $K$ while $n$ is not a divisor of $ch(K)$

Could we also take this polynomial: $F(X,Y,Z)=\sum_{i+j+k=n} a_{ijk} X^i Y^j Z^k$ ? (Thinking)

Could you explain me why we choose such a polynomial, that there is for example no constant term? (Thinking)
 
Hi evinda,

Both polynomials (yours and mine) are the same with different notation.

We choose such a polynomial because we want a homogeneus one of degree $n$.And this is more known as Euler's formula, but once a professors told me that it was originally proved by Leibniz, I haven't really found reliable information about this but I trust in my professor.
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

Replies
48
Views
4K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 16 ·
Replies
16
Views
4K
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K