MHB Showing $XF_{X}+YF_{Y}+ZF_{Z}=nF$ with a Homogeneous Polynomial

evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hi! (Smile)

Let $F(X,Y,Z) \in \mathbb{C}[X,Y,Z]$ a homogeneous polynomial of degree $n$. Could you give me a hint how we could show the following? (Thinking)

$$XF_{X}+YF_{Y}+ZF_{Z}=nF$$
 
Physics news on Phys.org
Hi evinda,

This is a particular case of Leibniz's identity.

Call $F=\displaystyle\sum_{j=0}^{k}\lambda_{j}X^{e_{x,j}}Y^{e_{y,j}}Z^{e_{z,j}}$ where $e_{x,j}+e_{y,j}+e_{z,j}=n$ for all $j$.

Then $F_{X}=\displaystyle\sum_{j=0, \ e_{x,j}\geq 1}^{k}e_{x,j}\lambda_{j}X^{e_{x,j}-1}Y^{e_{y,j}}Z^{e_{z,j}}$

And so for $Y, Z$, now it's just a computation.

Actually, in this way you can prove that this kind of equality holds for every homogeneus polynomial (no matter how many variables) over any field $K$ while $n$ is not a divisor of $ch(K)$
 
Fallen Angel said:
Hi evinda,

This is a particular case of Leibniz's identity.

Call $F=\displaystyle\sum_{j=0}^{k}\lambda_{j}X^{e_{x,j}}Y^{e_{y,j}}Z^{e_{z,j}}$ where $e_{x,j}+e_{y,j}+e_{z,j}=n$ for all $j$.

Then $F_{X}=\displaystyle\sum_{j=0, \ e_{x,j}\geq 1}^{k}e_{x,j}\lambda_{j}X^{e_{x,j}-1}Y^{e_{y,j}}Z^{e_{z,j}}$

And so for $Y, Z$, now it's just a computation.

Actually, in this way you can prove that this kind of equality holds for every homogeneus polynomial (no matter how many variables) over any field $K$ while $n$ is not a divisor of $ch(K)$

This is the original exercise:

If $F(x,y,z) \in \mathbb{C}[x,y,z]$ is a homogeneous polynomial of degree $n$, prove the Euler's formula.

$$XF_X+YF_Y+ZF_Z=nF$$

Is the last equality Euler's formula? (Thinking)
 
Fallen Angel said:
Hi evinda,

This is a particular case of Leibniz's identity.

Call $F=\displaystyle\sum_{j=0}^{k}\lambda_{j}X^{e_{x,j}}Y^{e_{y,j}}Z^{e_{z,j}}$ where $e_{x,j}+e_{y,j}+e_{z,j}=n$ for all $j$.

Then $F_{X}=\displaystyle\sum_{j=0, \ e_{x,j}\geq 1}^{k}e_{x,j}\lambda_{j}X^{e_{x,j}-1}Y^{e_{y,j}}Z^{e_{z,j}}$

And so for $Y, Z$, now it's just a computation.

Actually, in this way you can prove that this kind of equality holds for every homogeneus polynomial (no matter how many variables) over any field $K$ while $n$ is not a divisor of $ch(K)$

Could we also take this polynomial: $F(X,Y,Z)=\sum_{i+j+k=n} a_{ijk} X^i Y^j Z^k$ ? (Thinking)

Could you explain me why we choose such a polynomial, that there is for example no constant term? (Thinking)
 
Hi evinda,

Both polynomials (yours and mine) are the same with different notation.

We choose such a polynomial because we want a homogeneus one of degree $n$.And this is more known as Euler's formula, but once a professors told me that it was originally proved by Leibniz, I haven't really found reliable information about this but I trust in my professor.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
Back
Top