Significant digits rule when determining radius from diameter

Click For Summary
SUMMARY

The discussion centers on the application of the significant digits rule when calculating the radius (r) from the diameter (d) using the formula r = d / 2. Participants argue that since the factor 2 is exact, the accuracy of r should match that of d, thus negating the need for significant digits in this specific calculation. They emphasize that significant digits are relevant only when dealing with measurements that have inherent uncertainty, not in pure mathematical operations. The consensus is that common sense should guide the application of significant digits, particularly in cases where precision is clearly defined.

PREREQUISITES
  • Understanding of significant digits and their application in calculations
  • Basic knowledge of error propagation principles
  • Familiarity with mathematical operations involving division
  • Concept of measurement uncertainty and precision
NEXT STEPS
  • Study the principles of error propagation in detail
  • Learn about significant digits in the context of scientific measurements
  • Explore the implications of measurement uncertainty on calculations
  • Review mathematical operations and their relevance to significant digits
USEFUL FOR

Students in mathematics or science fields, educators teaching measurement concepts, and professionals involved in precision measurement and calculations.

vcsharp2003
Messages
913
Reaction score
179
Homework Statement
If ##r## and ##d## are radius and diameter of a given circle, then to determine radius from diameter we use the formula ##r = d \div 2##. Suppose, ##d=5## then ##r=5 \div 2 = 2.5##. I have a question regarding significant digits in this calculation. We know the significant digits rule for dividing two numbers is that the resulting value must have as many significant digits as the minimum number of significant digits of dividend and divisor. In this case the minimum number of significant digits is 1 for dividend or the divisor, and therefore why we don't apply this rule and express the answer as a number up to 1 significant digit?
Relevant Equations
##r = d \div 2##
Probably, to satisfy the significant digits rule for division, we should consider ##r = 5.0 \div 2.0##. But I'm unable to come up with a reason why significant digits rule should not apply to ##r= d \div 2##. Also, if we apply significant digits rule to this calculation then we loose accuracy and so we should ignore the significant digits rule.
 
Last edited:
Physics news on Phys.org
vcsharp2003 said:
the significant digits rule for dividing two numbers is that the resulting value must have as many significant digits as the minimum number of significant digits of dividend and divisor.
It is not a precise science. Common sense must be applied.
vcsharp2003 said:
if we apply significant digits rule to this calculation then we loose accuracy and so we should ignore the significant digits rule.
Quite.
 
  • Like
Likes   Reactions: vcsharp2003
Hi,

The golden rule for error propagation is $$\Bigl (\Delta f(x,y)\Bigr )^2 = \left({\partial f\over\partial x}\right )^2(\Delta x)^2 + \left({\partial f\over\partial y}\right )^2(\Delta y)^2\ \ .$$
In the case ##\ r = d/2\ ## there is no uncertainty in the factor 2, so we have $$\Delta r = {\Delta d\over 2}$$the first example formula here.

##\ ##
 
  • Like
Likes   Reactions: vcsharp2003
BvU said:
In the case r=d/2 there is no uncertainty in the factor 2
How does this fact imply that significant digits rule should not be applied to given scenario?
 
haruspex said:
It is not a precise science. Common sense must be applied.
We can say that accuracy of r is same as accuracy of d since 2 is an exact number. Now, if we assume that ##d## is accurate then ##d \div 2## must also be accurate and we don't need to apply significant digits rule to accurate numbers. Only if there is some uncertainty in values of dividend and divisor, do we need to apply significant digits rule. Does this reasoning sound correct?
 
vcsharp2003 said:
We can say that accuracy of r is same as accuracy of d since 2 is an exact number. Now, if we assume that ##d## is accurate then ##d \div 2## must also be accurate and we don't need to apply significant digits rule to accurate numbers. Only if there is some uncertainty in values of dividend and divisor, do we need to apply significant digits rule. Does this reasoning sound correct?
It depends on how the value of d is known. If it is given as 5cm in a made-up question you can take it to be exact. If someone measured it and stated the measurement as 5cm then you have a problem. Were they really not able to measure it more precisely than that, or are they just being lazy in not specifying it as 5.0cm, or whatever.

Taking it at face value, we are being told it is between 4.5cm and 5.5cm, so r is between 2.25cm and 2.75cm. If we try to express that by using an appropriate number of digits we have the choice of 2.5cm, implying it is between 2.45cm and 2.55cm, or 3cm, implying it is between 2.5cm and 3.5cm. Neither is satisfactory.
The only solution here is to state it as ##2.50\pm 0.25cm##.

Implying the precision from the number of digits works better when there are more of them to play with. If we start with d=1.005cm then it might not matter if we take r to be 0.503cm.
 
  • Like
Likes   Reactions: vcsharp2003
I think the rules of significant digits should only be applied when dealing with measurements, otherwise they have no relevance and should not be applied.

For example, if I ask someone to tell the result of ##1 \div 3## then there is absolutely no need to apply significant digits since its just a Math calculation and not related to measurements. As a student reading the chapter on significant digits, I was always curious when these rules should be used and when they should not.
 
Last edited:

Similar threads

  • · Replies 5 ·
Replies
5
Views
7K
  • · Replies 10 ·
Replies
10
Views
7K
  • · Replies 13 ·
Replies
13
Views
4K
  • · Replies 8 ·
Replies
8
Views
5K
Replies
7
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 18 ·
Replies
18
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 5 ·
Replies
5
Views
6K