Sigularity problem in NDSolve in mathematica

  • Thread starter moudas
  • Start date
  • #1
1
0

Main Question or Discussion Point

sigularity problem in "NDSolve" in mathematica

Hi,

I am trying to solve numerically 13 differential equations with intial boundary conditions in mathematica. In my case, the boundary conditions are not free parameters and those are constrained from experimental observations.
But these set of equations and boundary condition give the error in NDSolve as following,

"NDSolve::ndsz: At e == 11.706899882374666`, step size is effectively zero; singularity or stiff system suspected. >>"

Because of this error, the plots of those 13 variables changes abruptly at "e == 11.706899882374666`".
I am getting nice curve upto this particular vaue of "e".

My question is , How can get nice curve even after this value with out changing the boundary conditions?

Thanks in advance,
moudas
 

Answers and Replies

  • #2
Check for the two issues the error mentions.

Examine your diff eq's for evidence of an analytic singularity if you can. Maybe check limiting behaviors too.

If you can rule that out around the troubled value for e, then it might be the stiff system case.

If the numerical integration is rapidly oscillating between large numbers, it's not going to compute properly and the errors are going to propagate hugely. Try to nondimentionalize your equations and make sure the order of magnitude of your constants are similar if you can. If there are too many different time and length-scales in your system, it might not be able to be numerically solved this way.
 

Related Threads on Sigularity problem in NDSolve in mathematica

  • Last Post
Replies
6
Views
11K
  • Last Post
Replies
2
Views
4K
Replies
4
Views
7K
  • Last Post
Replies
0
Views
3K
  • Last Post
Replies
1
Views
2K
  • Last Post
Replies
2
Views
1K
  • Last Post
Replies
4
Views
1K
Top