Undergrad Similarities / diffs between diffusion & wave propagation

Click For Summary
Diffusion and wave propagation are governed by different differential equations, with the diffusion equation being first order in time and the wave equation being second order. The solutions to these equations exhibit distinct characteristics; the diffusion equation's solution represents a dissipative process that does not propagate as a wave, while the wave equation allows for both forward and backward propagating waves. The key difference lies in time-reversal symmetry, where the wave equation remains unchanged when time is reversed, whereas the diffusion equation does not, reflecting irreversible processes like heat conduction. This irreversibility means that diffusion describes phenomena that cannot occur in reverse, in line with the second law of thermodynamics. Understanding these differences is crucial for grasping the underlying physics of each phenomenon.
philmolz
Messages
2
Reaction score
0
Hi,

I'm a second year undergrad and we've covered the heat equation,

\begin{equation}
∇^{2}\Psi = \frac{1}{c^{2}}\frac{\partial^2 \Psi}{\partial t^2}
\end{equation}

and the wave equation,

\begin{equation}
D∇^{2}u= \frac{\partial u}{\partial t}
\end{equation}

in our differential equations course. Both Diffusion and wave propagation have wave like solutions, for example,

\begin{equation}
u= Ce^{-\sqrt{w/2D} x } \sin{(\sqrt{w/2D} x - wt)}
\end{equation}
\begin{equation}
\Psi = \Psi_{0} e^{i(kx-wt)}
\end{equation}

but are quite different phenomena. Could someone briefly explain the similarities/ differences in the phenomena and the solutions and how this relates to the differential equations please? Thanks.
 
Physics news on Phys.org
First, the difference in the equations themselves: The diffusion equation is first order in time, whereas the wave equation is second order. Now the solutions. The solution (3) to the diffusion equation is not a propagating wave, and is not a solution to the wave equation. Similarly, the solution (4) to the wave equation is not a solution of the diffusion equation.
 
That's great, thanks, but I thought (3) is a propagating wave that is attenuated with distance (propagating wave enveloped by a decaying exponential). Also, I was wondering what the physical difference between the two phenomena is that leads to the difference in the equations, ie why we don't just have a simple propagating wave solution for heat diffusion?
 
The wave equation (1) does not allow an attenuating solution. You can check that by substituting the attenuating function (3) into (1). Any solution of the wave equation is of the form f(x ± vt). The decaying solution is not of that form.
The difference between the two equations (and their solutions) is in time-reversal symmetry:
In equation (1), if you change t to - t, the equation is the same. That translates to the fact (easy to check) that both a forward propagating wave (unattenuated), and a backward propagating wave are solutions of the same equation, and are actually possible phenomena. You see both waves happening all the time.
The diffusion equation (2), on the other hand, is not invariant under time reversal. It represents a macroscopic irreversible process, for example, heat conduction from a high temperature region to a low temperature region, spreading of a drop of ink through a body of water, etc. these processes never happen in the reverse direction. These are inherently dissipative processes. The reverse processes (conduction from low to high temperature, the ink drop gathering back together) would violate the second law of thermodynamics. They are not solutions of the diffusion equation.
The attenuating "wave" is actually a dissipative process, in which energy is transferred from the "wave" into several other modes. That process is also irreversible, and is a solution of the diffusion equation.
 
I do not have a good working knowledge of physics yet. I tried to piece this together but after researching this, I couldn’t figure out the correct laws of physics to combine to develop a formula to answer this question. Ex. 1 - A moving object impacts a static object at a constant velocity. Ex. 2 - A moving object impacts a static object at the same velocity but is accelerating at the moment of impact. Assuming the mass of the objects is the same and the velocity at the moment of impact...

Similar threads

  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 19 ·
Replies
19
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 0 ·
Replies
0
Views
3K
  • · Replies 21 ·
Replies
21
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K