- #1
deuteron
- 60
- 13
- TL;DR Summary
- As far as I've encountered, the imaginary part of functions describing physical phenomena have a physical meaning too. What is the physical meaning of the imaginary part of the wave function for the plane wave?
We know the wave function:
$$ \frac {\partial^2\psi}{\partial t^2}=\frac {\partial^2\psi}{\partial x^2}v^2,$$
where the function ##\psi(x,t)=A\ e^{i(kx-\omega t)}## satisfies the wave function and is used to describe plane waves, which can be written as:
$$ \psi(x,t)=A\ [\cos(kx-\omega t)+i\sin(kx-\omega t)]$$
Here, the real part of the equation alone, ##\Re(\psi)=A\cos(kx-\omega t)##, also describes a plane wave, however what is the physical meaning of the imaginary part? I know that in QM, since ##|\psi|## depends on the imaginary part too, it has some physical relevance, but my question is not necessarily limited to quantum mechanics. I have seen other similar questions, but I unfortunately haven't seen a satisfying answer
The motivation behind my question is that so far the complex parts of physical variables I have encountered also have a physical meaning: The complex part of the refraction index corresponds to the absorption, the complex part of the scattering amplitude indicates the existence of inelastic processes; that's why I am curious
If it doesn't have a meaning, why don't we say that ##A\sin(kx-\omega t),\ A\cos(kx-\omega t)## and ##A\exp[i(kx-\omega t)]## all satisfy the wave equation, where we don't know the physical meaning of the exponential one?
$$ \frac {\partial^2\psi}{\partial t^2}=\frac {\partial^2\psi}{\partial x^2}v^2,$$
where the function ##\psi(x,t)=A\ e^{i(kx-\omega t)}## satisfies the wave function and is used to describe plane waves, which can be written as:
$$ \psi(x,t)=A\ [\cos(kx-\omega t)+i\sin(kx-\omega t)]$$
Here, the real part of the equation alone, ##\Re(\psi)=A\cos(kx-\omega t)##, also describes a plane wave, however what is the physical meaning of the imaginary part? I know that in QM, since ##|\psi|## depends on the imaginary part too, it has some physical relevance, but my question is not necessarily limited to quantum mechanics. I have seen other similar questions, but I unfortunately haven't seen a satisfying answer
The motivation behind my question is that so far the complex parts of physical variables I have encountered also have a physical meaning: The complex part of the refraction index corresponds to the absorption, the complex part of the scattering amplitude indicates the existence of inelastic processes; that's why I am curious
If it doesn't have a meaning, why don't we say that ##A\sin(kx-\omega t),\ A\cos(kx-\omega t)## and ##A\exp[i(kx-\omega t)]## all satisfy the wave equation, where we don't know the physical meaning of the exponential one?
Last edited: