Simple geometry problem -- Find the perimeter of the triangle ABC

Click For Summary

Homework Help Overview

The problem involves finding the perimeter of triangle ABC, with specific lengths provided for sides and tangent points. The context includes geometric properties and relationships between the triangle's sides and angles.

Discussion Character

  • Exploratory, Conceptual clarification, Problem interpretation

Approaches and Questions Raised

  • Participants discuss the relationships between the sides of the triangle and the tangent points, noting suspected equalities and attempting to establish equations based on given lengths. Some express confusion over the number of unknowns versus equations.

Discussion Status

The discussion is ongoing, with participants providing insights and questioning assumptions about the triangle's properties. Some suggest that basic algebra may suffice for solving the problem, while others emphasize the importance of understanding the geometric relationships involved.

Contextual Notes

There are mentions of isosceles triangles formed by the tangent points, and the discussion includes a reference to the internal angles of the triangle summing to pi. Participants also note a potential typo in the terminology used.

docnet
Messages
796
Reaction score
486
Homework Statement
what is the perimeter of the triangle ABC?
Relevant Equations
##\angle A+\angle B + \angle C = \pi##
Hello, so I saw this problem on a website while looking up trigonometric identities and trying to solve it.
Screen Shot 2021-10-11 at 12.28.39 PM.png

what I know:
The internal angles add up to pi
Let the tangent point between A and B be X
Let the tangent point between B and C be Y
Let the tangent point between C and A be Z
## \overline {AC} = 14##
## \overline {BX} = 16##Things I suspect are true, but have yet to prove:
##\overline {AX} =\overline {AZ}##
##\overline {CZ} =\overline {CY}##
##\overline {BX} =\overline {BY}##

Relations:
##\overline {CY}=14-\overline {AZ}##
##\overline {AX}=\overline {AB}-16##so far I only found three unknowns and only two equations! I think that this is strangely difficult.
 
Physics news on Phys.org
Um, the circle is circumcised?

...anyway, yes, these are true:
docnet said:
Things I suspect are true, but have yet to prove:
##\overline {AX} =\overline {AZ}##
##\overline {CZ} =\overline {CY}##
##\overline {BX} =\overline {BY}##
which you can see by, e.g. considering the right angled triangles ##AXP## and ##AZP## with common hypotenuse, etc.

Now you can see the answer just by looking at the figure, but if you like, denote the three relevant lengths by ##a,b,c## (i.e. ##a+c = 14, b=16##) and do it algebraically.
 
Last edited:
  • Like
  • Haha
Likes   Reactions: DaveE, berkeman and BvU
@ergo: you rob docnet of the exercise this way!
PF normally restricts help to guiding questions and hints...
 
Last edited:
ergospherical said:
Um, the circle is circumcised?

...anyway, yes, these are true:

which you can see by, e.g. considering the right angled triangles AXP and AZP with common hypotenuse, etc.

Now you can see the answer just by looking at the figure, but if you like, denote the three relevant lengths by a,b,c (i.e. a+c=14,b=16) and do it algebraically.
aha! the perimeter of the triangle is 16+ 16+14+14 =60. thank you ! it seems obvious now

and I did not realize that it says circumcised. It was probably a typo.
 
Last edited:
  • Like
Likes   Reactions: berkeman
ergospherical said:
the circle is circumcised?
Else the triangle would have been larger.
 
docnet said:
Homework Statement:: what is the perimeter of the triangle ABC?
Relevant Equations:: ##\angle A+\angle B + \angle C = \pi##

Hello, so I saw this problem on a website while looking up trigonometric identities and trying to solve it.
View attachment 290564
what I know:
The internal angles add up to pi
Let the tangent point between A and B be X
Let the tangent point between B and C be Y
Let the tangent point between C and A be Z
## \overline {AC} = 14##
## \overline {BX} = 16##Things I suspect are true, but have yet to prove:
##\overline {AX} =\overline {AZ}##
##\overline {CZ} =\overline {CY}##
##\overline {BX} =\overline {BY}##

Relations:
##\overline {CY}=14-\overline {AZ}##
##\overline {AX}=\overline {AB}-16##so far I only found three unknowns and only two equations! I think that this is strangely difficult.
Notice the three isoscelese "triangles" created by the circles tangent points? You don't need any trigonometry to solve this only basic algebra and that fact.
 
valenumr said:
Notice the three isoscelese "triangles" created by the circles tangent points? You don't need any trigonometry to solve this only basic algebra and that fact.
As noted in post #2, and used in post #3.
 
  • Like
Likes   Reactions: valenumr
haruspex said:
As noted in post #2, and used in post #3.
Yeah, I just answered quickly without reading the thread. A better explanation was also provided proving the equal triangles.
 

Similar threads

Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
5
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K