I think there's something about this in Vogel's Practical Organic Chemistry.
But probably that was about crystallisations. In a crystallisation your compound of interest is usually in the solid phase; we could say that you want to enrich the solid phase in one substance and leave as much as possible of all the other substances behind in the liquid phase.
In your case you're doing the opposite: you want to dissolve the compound of interest and leave the other substance(s) as 'undissolved' as possible.
So, say that you start from a mass m of solid, containing a percentage p of compound of interest (let's call it P). So the solid contains a mass m*p of P and a mass m*(1-p) of an impurity I.
Now you add a volume V of solvent.
If the solubility of P in the solvent is SP, and the solubility of I is SI, with SI < SP, then (assuming the dissolution of each compound is independent of the presence of the other compounds, and neglecting the change in volume etc):
- mass of P in the liquid phase: min(V*SP,m*p)
- mass of I in the liquid phase: min(V*SI,m*(1-p))
- mass of P in the solid phase: max(0,m*p-V*SP)
- mass of I in the solid phase: max(0,m*(1-p)-V*SI)
So, if the above is correct, you can decide how much solvent to use (V) by setting up the appropriate equation.
If you want to get all of P in the liquid, while dissolving as little I as possible, then:
V = m*p / SP
In this case, after filtration and evaporation, the solid will contain a percentage of P equal to p1:
p1 = SP / ( SP + SI )
The above procedure is worth doing only if p1 > p.
If it's true that the solubility of I is very low compared to the solubility of P, then p1≈1, as already pointed out by SteamKing.
How do you get the solubilities of P and I in the solvent?
Personally I would use LCMS. If you add a small amount of solvent to your starting solid, so that both P and I are at saturation, filter the suspension and inject, the areas of the peaks should give you an indication of the relative solubilities. But this will strongly depend on the type of detector, etc.
If you want to be more precise and/or know the absolute values, you'd have to get pure samples of each substance, do a calibration, etc.
Note that this is an approximate method I would use for standard work in organic chemistry. I'm sure analytical chemists have much more refined ways of doing this.