MHB Simple question about Limit Properties

  • Thread starter Thread starter cbarker1
  • Start date Start date
  • Tags Tags
    Limit Properties
cbarker1
Gold Member
MHB
Messages
345
Reaction score
23
I read a textbook about limits. I saw several properties about the limits.

$$lim f(bx)= b*lim f(x)$$ as x approach cThank you

Cbarker1
 
Physics news on Phys.org
Pick $ f(y) = \frac{1}{y}$. Then $\displaystyle \lim_{x \to c} f(bx) = \lim_{x \to c}\frac{1}{bx} = \frac{1}{bc}$. On the other hand $\displaystyle \lim_{x \to c} bf(x) = b\lim_{x \to c}\frac{1}{x} = \frac{b}{c}.$

Of course $ \frac{1}{bc} \ne \frac{b}{c}$. I'm missing something or the property is false (or they meant something else).
 
Hello, Cbarker1!

I read a textbook about limits.
I saw several properties about the limits.

$$\lim_{x\to c} f(bx)\:=\: b\cdot\lim_{x\to c}f(x)$$
This is not true.

Let f(x) \:=\:2x+7

Then: .\lim_{x\to1}f(3x) \:=\:\lim_{x\to1}(6x+7) \:=\:13

But: .3\cdot\lim_{x\to1}f(x) \:=\:3\cdot\lim_{x\to1}(2x+7) \:=\:3\cdot 9 \:=\:27Perhaps you misread the identity.
The following is true.

. . \lim_{x\to c}b\!\cdot\!\!f(x) \;=\;b\!\cdot\!\lim_{x\to c}f(x)
 

Similar threads

Back
Top