Simplifying a Messy Question - Any Help Appreciated!

  • Context: MHB 
  • Thread starter Thread starter nacho-man
  • Start date Start date
  • Tags Tags
    Simplifying
Click For Summary

Discussion Overview

The discussion revolves around simplifying a complex question related to a joint probability distribution, specifically a bivariate normal distribution. Participants explore methods for handling the mathematical intricacies of the problem, including integration and independence of variables, as well as the implications of certain parameters.

Discussion Character

  • Exploratory
  • Technical explanation
  • Debate/contested
  • Mathematical reasoning

Main Points Raised

  • Some participants express uncertainty about how to simplify the given joint distribution function and question whether integration of the entire function is necessary.
  • One participant suggests that the joint distribution is a specific case of the bivariate normal distribution, indicating potential properties that could be useful.
  • There are discussions about the marginal distribution of X and its relationship to the joint distribution, with some participants providing mathematical expressions for these distributions.
  • Concerns are raised about the independence of variables X and Y for certain values of the parameter lambda, with specific queries about how this independence is determined.
  • Participants seek clarification on how to describe the parameters of the joint probability density function in terms of the bivariate normal distribution.
  • There are conflicting answers regarding the marginal distributions and conditional distributions, with one participant expressing confusion over discrepancies in results and the necessity of showing integration steps.

Areas of Agreement / Disagreement

Participants generally do not reach consensus on the simplification methods or the independence of variables. Multiple competing views and uncertainties remain regarding the mathematical treatment of the distributions and the interpretations of the parameters involved.

Contextual Notes

There are unresolved questions about the assumptions underlying the joint distribution and the implications of specific parameter values. Participants also express confusion about the integration process and the derivation of marginal distributions.

Who May Find This Useful

This discussion may be useful for students or practitioners dealing with probability theory, particularly those interested in bivariate distributions and their properties.

nacho-man
Messages
166
Reaction score
0
Please refer to the attached image.

Is there a way to simplify this question? It looks really messy but I have a feeling there is some nifty way around it. Surely they don't want us to integrate that entire function.

I also have no idea about part d)
how can some values of lambda result in X and Y being independent, and others not?

Any help appreciated.
Thanks in advnance
 

Attachments

  • mathq2.jpg
    mathq2.jpg
    16.9 KB · Views: 106
Physics news on Phys.org
nacho said:
Please refer to the attached image.

Is there a way to simplify this question? It looks really messy but I have a feeling there is some nifty way around it. Surely they don't want us to integrate that entire function.

I also have no idea about part d)
how can some values of lambda result in X and Y being independent, and others not?

Any help appreciated.
Thanks in advnance

Before to try some 'brute force approach' my be it is useful to observe that the given joint distribution...

$\displaystyle f(x,y) = \frac{1}{2\ \pi\ \lambda^{3}}\ e^{- \frac{1}{2\ \lambda^{4}}\ \{(x-\lambda)^{2} + (y-\lambda)^{2} - 2\ \sqrt{1-\lambda^{2}}\ (x-\lambda)\ (y-\lambda)\}}\ (1)$

... is a particular case of the bivariate normal distribution...

$\displaystyle f(x,y) = \frac{1}{2\ \pi\ \sigma_{x}\ \sigma_{y}\ \sqrt{1- \rho^{2}}}\ e^{- \frac{z}{2\ (1-\rho^{2})}}\ (2)$

... where...

$\displaystyle z = \frac{(x-\mu_{x})^{2}}{\sigma_{x}^{2}} + \frac{(y-\mu_{y})^{2}}{\sigma_{y}^{2}} - 2\ \frac{\rho\ (x - \mu_{x})\ (y-\mu_{y})}{\sigma_{x}\ \sigma_{y}}\ (3) $

... and $\displaystyle \mu_{x}= \mu_{y} = \sigma_{x} = \sigma_{y} = \sqrt{1-\rho^{2}} = \lambda$...

Kind regards

$\chi$ $\sigma$
 
thanks chi

I am unsure what to do with this information, how am I supposed to utilise it?

I have a feeling that you want me to use known properties of a bivariate distribution, and that the function will have the same properties, just with some transformations?

could also you suggest what I area I study in order to solve questions like these?
 
chisigma said:
Before to try some 'brute force approach' my be it is useful to observe that the given joint distribution...

$\displaystyle f(x,y) = \frac{1}{2\ \pi\ \lambda^{3}}\ e^{- \frac{1}{2\ \lambda^{4}}\ \{(x-\lambda)^{2} + (y-\lambda)^{2} - 2\ \sqrt{1-\lambda^{2}}\ (x-\lambda)\ (y-\lambda)\}}\ (1)$

... is a particular case of the bivariate normal distribution...

$\displaystyle f(x,y) = \frac{1}{2\ \pi\ \sigma_{x}\ \sigma_{y}\ \sqrt{1- \rho^{2}}}\ e^{- \frac{z}{2\ (1-\rho^{2})}}\ (2)$

... where...

$\displaystyle z = \frac{(x-\mu_{x})^{2}}{\sigma_{x}^{2}} + \frac{(y-\mu_{y})^{2}}{\sigma_{y}^{2}} - 2\ \frac{\rho\ (x - \mu_{x})\ (y-\mu_{y})}{\sigma_{x}\ \sigma_{y}}\ (3) $

... and $\displaystyle \mu_{x}= \mu_{y} = \sigma_{x} = \sigma_{y} = \sqrt{1-\rho^{2}} = \lambda$...

The main reason why I remember the normal bivariate distribution is that we can use its very comfortable properties...

Bivariate Normal Distribution -- from Wolfram MathWorld

Regarding the points a) we have that the marginal distribution function of the X is...

$\displaystyle f_{x} (x) = \int_{- \infty}^{+ \infty} f(x,y)\ dy = \frac{1}{\sigma_{x}\ \sqrt{2\ \pi}}\ e^{- \frac{(x - \mu_{x})^{2}}{2\ \sigma_{x}^{2}}} = \frac{1}{\lambda\ \sqrt{2\ \pi}}\ e^{- \frac{(x - \lambda )^{2}}{2\ \lambda^{2}}}\ (1)$

Now the point b) is direct consequence of (1)... why?...

Kind regards

$\chi$ $\sigma$
 
chisigma said:
The main reason why I remember the normal bivariate distribution is that we can use its very comfortable properties...

Bivariate Normal Distribution -- from Wolfram MathWorld

Regarding the points a) we have that the marginal distribution function of the X is...

$\displaystyle f_{x} (x) = \int_{- \infty}^{+ \infty} f(x,y)\ dy = \frac{1}{\sigma_{x}\ \sqrt{2\ \pi}}\ e^{- \frac{(x - \mu_{x})^{2}}{2\ \sigma_{x}^{2}}} = \frac{1}{\lambda\ \sqrt{2\ \pi}}\ e^{- \frac{(x - \lambda )^{2}}{2\ \lambda^{2}}}\ (1)$

Now the point b) is direct consequence of (1)... why?...

The knowledge of $\displaystyle f_{x} (x)$ and the following useful article...

http://mpdc.mae.cornell.edu/Courses/MAE714/biv-normal.pdf

... permits us to find the conditional distribution...

$\displaystyle f_{Y|X=x} (y) = \frac{f(x,y)}{f_{x}(x)} = \frac{1}{\sqrt{2\ \pi}\ \sigma_{y}\ \sqrt{1 - \rho^{2}}}\ e^{- \frac{1}{2\ \sigma_{y}^{2}\ (1-\rho^{2})}\ \{y - \mu_{y} - \rho\ \frac{\sigma{y}}{\sigma_{x}}\ (x-\mu_{x})\}^{2}} = \frac{1}{\sqrt{2\ \pi}\ \lambda^{3}}\ e^{- \frac{1}{2\ \lambda^{4}}\ \{y - 2\ \lambda - \lambda\ (x-\lambda)\}^{2}}\ (1)$

Now the (1) is a standard normal ditribution with mean $\displaystyle \mu_{y} + \rho\ \frac{\sigma_{y}}{\sigma_{x}}\ (x - \mu_{x})$ and variance $\displaystyle (1- \rho^{2})\ \sigma_{y}^{2}$ so that is... $\displaystyle E \{Y|X=x\} = \lambda + \sqrt{1 - \lambda^{2}}\ (x - \lambda)\ (2)$

... and the point b) is answered... the remaining point c) and d) shouldn't be too difficult to attack at this point... expecially the point d)!...Kind regards $\chi$ $\sigma$
 
point of clarification - how would you describe the parameters of our joint PDF in terms of the bivariate normal distribution?

also, is it independent for $\lambda$ = 1? for part d)

Paramaters of distributions always confuse me, I lost a huge bulk of marks on my mid-term because I don't understand what is trying to be said/communicated.

Would you be able to explain that?
Thanks!

edit: also for part a) when finding the marginal distributions, is it sufficient for us to say $ f_{X}(x) = \int...dy = ...$ or do we actually have to show the integration? ie, is this just a property we can use, or one which we must derive?

for part b)
i got a different answer from you, and i don't know what I did wrong

so $f_{X}(x)$ = $\frac{1}{\lambda \sqrt{2\pi}}$ $e^{(\frac{-(x-\lambda)^2)}{2(\lambda)^2}} $

and $f_{X,Y}(x,y)$ = $\frac{1}{2 \pi (\lambda)^3}$ $e^{...}$

and
$\frac{f_{X,Y}(x,y)}{f_X(x)}$ should at least have $(\lambda)^2 $in the denominator, as opposed to a $\lambda^4$ ?
additionally, my exponential was a different power from yours, i don't know how you simplified yours
 
Last edited:

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K