MHB Simplifying a rational expression

Click For Summary
The discussion centers on simplifying the rational expression (12+r-r^2)/(r^3 +3r^2). The correct simplification leads to the result (4-r)/r^2 after factoring both the numerator and denominator. The numerator can be factored as (3+r)(4-r), while the denominator factors to r^2(r+3). The cancellation of the common factor (r+3) is noted, with the condition that r cannot equal -3. The final simplified expression is confirmed as (4-r)/r^2.
hollywalker
Messages
1
Reaction score
0
Hello,
I am having difficulty solving my math problems.

Simplify the expression:
(12+r-r^2)/(r^3 +3r^2)

The answer is (4-r)/r^2

I know that i can expand 12+r-r^2 as (-r+4)(r+3)
But i cannot figure out the rest. Please help me. Thanks
 
Mathematics news on Phys.org
hollywalker said:
Hello,
I am having difficulty solving my math problems.

Simplify the expression:
(12+r-r^2)/(r^3 +3r^2)

The answer is (4-r)/r^2

I know that i can expand 12+r-r^2 as (-r+4)(r+3)
But i cannot figure out the rest. Please help me. Thanks

(Wave)

$$-r^2+r+12=0$$

$$\Delta=b^2-4ac=1-4 (-1 \cdot 12)=1+48=49$$

$$r_{1,2}=\frac{-b \pm \sqrt{\Delta}}{2a}=\frac{-1 \pm 7}{-2}=4,-3$$

So,the expression can be written like that:

$$\frac{12+r-r^2}{r^3+3r^2}=\frac{-(r-4) \cdot (r+3)}{r^2 \cdot (r+3)}=\frac{-(r-4)}{r^2}=\frac{4-r}{r^2}$$
 
Hello, hollywalker!

Simplify: .\frac{12+r-r^2}{r^3 +3r^2}
Factor the numerator: 12+r-r^2 \:=\: (3+r)(4-r)
Factor the denominator: r^3 + 3r^2 \:=\:r^2(r+3)

The fraction becomes: .\frac{(3+r)(4-r)}{r^2(r+3)}

Reduce: .\frac{\cancel{(3+r)}(4-r)}{r^2\cancel{(r+3)}} \;=\;\frac{4-r}{r^2}
 
Also note that if you're crossing $(r+3)$ from the top and bottom, then $r \ne -3$.
 
Hi hollywalker, welcome to MHB!:)

I have moved your topic to a more appropriate sub-forum, and given a new title to it to indicate the nature of the question being asked.
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K