MHB Simplifying a rational expression

AI Thread Summary
The discussion centers on simplifying the rational expression (12+r-r^2)/(r^3 +3r^2). The correct simplification leads to the result (4-r)/r^2 after factoring both the numerator and denominator. The numerator can be factored as (3+r)(4-r), while the denominator factors to r^2(r+3). The cancellation of the common factor (r+3) is noted, with the condition that r cannot equal -3. The final simplified expression is confirmed as (4-r)/r^2.
hollywalker
Messages
1
Reaction score
0
Hello,
I am having difficulty solving my math problems.

Simplify the expression:
(12+r-r^2)/(r^3 +3r^2)

The answer is (4-r)/r^2

I know that i can expand 12+r-r^2 as (-r+4)(r+3)
But i cannot figure out the rest. Please help me. Thanks
 
Mathematics news on Phys.org
hollywalker said:
Hello,
I am having difficulty solving my math problems.

Simplify the expression:
(12+r-r^2)/(r^3 +3r^2)

The answer is (4-r)/r^2

I know that i can expand 12+r-r^2 as (-r+4)(r+3)
But i cannot figure out the rest. Please help me. Thanks

(Wave)

$$-r^2+r+12=0$$

$$\Delta=b^2-4ac=1-4 (-1 \cdot 12)=1+48=49$$

$$r_{1,2}=\frac{-b \pm \sqrt{\Delta}}{2a}=\frac{-1 \pm 7}{-2}=4,-3$$

So,the expression can be written like that:

$$\frac{12+r-r^2}{r^3+3r^2}=\frac{-(r-4) \cdot (r+3)}{r^2 \cdot (r+3)}=\frac{-(r-4)}{r^2}=\frac{4-r}{r^2}$$
 
Hello, hollywalker!

Simplify: .\frac{12+r-r^2}{r^3 +3r^2}
Factor the numerator: 12+r-r^2 \:=\: (3+r)(4-r)
Factor the denominator: r^3 + 3r^2 \:=\:r^2(r+3)

The fraction becomes: .\frac{(3+r)(4-r)}{r^2(r+3)}

Reduce: .\frac{\cancel{(3+r)}(4-r)}{r^2\cancel{(r+3)}} \;=\;\frac{4-r}{r^2}
 
Also note that if you're crossing $(r+3)$ from the top and bottom, then $r \ne -3$.
 
Hi hollywalker, welcome to MHB!:)

I have moved your topic to a more appropriate sub-forum, and given a new title to it to indicate the nature of the question being asked.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.

Similar threads

Back
Top