MHB Simplifying Expression: $\frac{z^2(w-x)(x-y)}{(w-x)(x-y)(y-w)}$

Click For Summary
The discussion focuses on simplifying the expression involving multiple fractions with variables w, x, y, and z. Participants are encouraged to simplify the given expression, which combines terms with common factors in the numerator and denominator. A hint is provided to guide the simplification process. One participant notes that their solution closely resembles another's, indicating a consensus on the approach to the problem. The overall goal is to achieve a more straightforward form of the complex expression.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Simplify the expression below:

$\dfrac{w^2(z-x)(z-y)}{(w-x)(w-y)}+\dfrac{x^2(z-y)(z-w)}{(x-y)(x-w)}+\dfrac{y^2(z-w)(z-x)}{(y-w)(y-x)}$
 
Mathematics news on Phys.org
Hint:

Lagrange's Interpolation Formula
 
anemone said:
Simplify the expression below:

$\dfrac{w^2(z-x)(z-y)}{(w-x)(w-y)}+\dfrac{x^2(z-y)(z-w)}{(x-y)(x-w)}+\dfrac{y^2(z-w)(z-x)}{(y-w)(y-x)}$

Solution of other:

If $f(a)=a^2$ and if we have the points $(a,\,a^2)=(w,\,w^2),\,(x,\,x^2),\,(y,\,y^2)$ then

$g(a)=\dfrac{w^2(a-x)(a-y)}{(w-x)(w-y)}+\dfrac{x^2(a-y)(a-w)}{(x-y)(x-w)}+\dfrac{y^2(a-w)(a-x)}{(y-w)(y-x)}$

We see that $g(a)$ is identical to $f(a)$.

Since $g(a)$ has degree at most two, if we let

$K=\dfrac{w^2(z-x)(z-y)}{(w-x)(w-y)}+\dfrac{x^2(z-y)(z-w)}{(x-y)(x-w)}+\dfrac{y^2(z-w)(z-x)}{(y-w)(y-x)}$, we have

$K=f(z)=z^2$ and we are done.
 
my solution is almost the same as anemone has mentioned
we consider the original expression as a function of $z$ with degree 2
if $z=x$ then $f(z)=x^2$
if $z=y$ then $f(z)=y^2$
if $z=w$ then $f(z)=w^2$
so we may conclude :$f(z)=z^2$
 
Last edited:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Replies
6
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K