Simplifying Expression: $\frac{z^2(w-x)(x-y)}{(w-x)(x-y)(y-w)}$

Click For Summary

Discussion Overview

The discussion centers around simplifying a complex algebraic expression involving multiple variables and fractions. The scope includes mathematical reasoning and simplification techniques.

Discussion Character

  • Mathematical reasoning

Main Points Raised

  • Post 1 presents an expression to be simplified, involving terms with variables z, w, x, and y.
  • Post 2 provides a hint, though the content of the hint is not specified.
  • Post 3 reiterates the expression for simplification, suggesting a focus on the same mathematical problem.
  • Post 4 indicates that the participant's solution is similar to another participant's approach, though no specific details are provided about the solutions.

Areas of Agreement / Disagreement

Participants have not reached a consensus on the simplification process, and multiple approaches or solutions appear to be discussed without resolution.

Contextual Notes

The discussion may involve assumptions about the variables and their relationships, which are not explicitly stated. The hint in Post 2 lacks detail, leaving some ambiguity in the simplification process.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Simplify the expression below:

$\dfrac{w^2(z-x)(z-y)}{(w-x)(w-y)}+\dfrac{x^2(z-y)(z-w)}{(x-y)(x-w)}+\dfrac{y^2(z-w)(z-x)}{(y-w)(y-x)}$
 
Mathematics news on Phys.org
Hint:

Lagrange's Interpolation Formula
 
anemone said:
Simplify the expression below:

$\dfrac{w^2(z-x)(z-y)}{(w-x)(w-y)}+\dfrac{x^2(z-y)(z-w)}{(x-y)(x-w)}+\dfrac{y^2(z-w)(z-x)}{(y-w)(y-x)}$

Solution of other:

If $f(a)=a^2$ and if we have the points $(a,\,a^2)=(w,\,w^2),\,(x,\,x^2),\,(y,\,y^2)$ then

$g(a)=\dfrac{w^2(a-x)(a-y)}{(w-x)(w-y)}+\dfrac{x^2(a-y)(a-w)}{(x-y)(x-w)}+\dfrac{y^2(a-w)(a-x)}{(y-w)(y-x)}$

We see that $g(a)$ is identical to $f(a)$.

Since $g(a)$ has degree at most two, if we let

$K=\dfrac{w^2(z-x)(z-y)}{(w-x)(w-y)}+\dfrac{x^2(z-y)(z-w)}{(x-y)(x-w)}+\dfrac{y^2(z-w)(z-x)}{(y-w)(y-x)}$, we have

$K=f(z)=z^2$ and we are done.
 
my solution is almost the same as anemone has mentioned
we consider the original expression as a function of $z$ with degree 2
if $z=x$ then $f(z)=x^2$
if $z=y$ then $f(z)=y^2$
if $z=w$ then $f(z)=w^2$
so we may conclude :$f(z)=z^2$
 
Last edited:

Similar threads

Replies
6
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 11 ·
Replies
11
Views
2K