Simplifying Logical Expressions [SOLVED]

Click For Summary

Discussion Overview

The discussion revolves around the simplification of logical expressions, specifically using DeMorgan's Law and the Distributive Property. Participants explore the application of these laws to various expressions and the concept of what constitutes a simplified expression.

Discussion Character

  • Technical explanation
  • Conceptual clarification
  • Debate/contested

Main Points Raised

  • One participant presents a logical expression and seeks clarification on whether it is appropriate to apply the Distributive Law after using DeMorgan's Law.
  • Another participant argues that DeMorgan's Law must be applied again to simplify the expression correctly before using the Distributive Law.
  • A participant questions the meaning of "simplifying an expression," noting that removing "NOT" connectives does not always lead to a clearer or more concise expression.
  • There is a suggestion that the expression could be simplified to a form that is easier to understand, despite having the same number of atomic propositions.
  • Participants discuss the potential ambiguity in logical expressions and the importance of parentheses in clarifying the order of operations.

Areas of Agreement / Disagreement

Participants express differing views on the application of logical laws and the definition of simplification. There is no consensus on the best approach to simplification or the criteria for determining when an expression is truly simplified.

Contextual Notes

Participants note that different measures of simplification exist, and the discussion highlights the subjective nature of what constitutes a simpler expression.

Valtham
Messages
3
Reaction score
0
[SOLVED] Simplifying Expressions

Hello all I am a bit confused about the laws I am learning about right now and attempted some of my own exercises to understand them a bit.

I have the problem NOT(a < 20 AND (b < 10 OR b > 10)) and I need to simplify it.

From my understanding I can use DeMorgan's Law which then gives me the expression NOT a < 20 OR NOT(b < 10 OR b > 10). I can then use the Distributive Property to create the expression (NOT a < 20 OR NOT b < 10) AND (NOT a < 20 OR NOT b > 10).

What I am confused about is after I use DeMorgan's Law the first time is it correct to use the Distributive Law next? Or should I have used DeMorgan's Law again?
 
Last edited:
Physics news on Phys.org
Valtham said:
What I am confused about is after I use DeMorgan's Law the first time is it correct to use the Distributive Law next? Or should I have used DeMorgan's Law again?
You can't use the distributive law immediately after the first De Morgan's law. Distributivity requires that the expression has both a disjunction and a conjunction. So, first you need to convert NOT(b < 10 OR b > 10) into (NOT b < 10) AND (NOT b > 10) and then use distributivity. You indeed get (NOT a < 20 OR NOT b < 10) AND (NOT a < 20 OR NOT b > 10).

If < denoted the regular order, then I believe the simplest form of this is expression is a >= 20 OR b = 10.
 
Thanks for the reply. Makes total sense that I would have to use DeMorgan's Law again. I can see how you get a >= 20 OR b = 10, but what if the expression had been (NOT a < 20 AND NOT (b <= 10 OR b >= 15)). Using that expression the "simplified" version would be a >= 20 OR b >= 10 AND b <= 15. To me that expression hardly seems simplified, and all we did was remove the "NOT" connectives pretty much. What does "simplifying an expression" mean exactly? We weren't really given a precise definition other than an example that removes as many variables and connectives as possible.
 
Valtham said:
what if the expression had been (NOT a < 20 AND NOT (b <= 10 OR b >= 15)). Using that expression the "simplified" version would be a >= 20 OR b >= 10 AND b <= 15.
It should say, "... b > 10 AND b < 15." Also, usually AND is considered to have higher priority than OR, so omitting parentheses is OK, but unless this is an explicit convention in your course, it may still make sense to put parentheses around b > 10 AND b < 15 to remove any ambiguity.

Valtham said:
To me that expression hardly seems simplified, and all we did was remove the "NOT" connectives pretty much. What does "simplifying an expression" mean exactly? We weren't really given a precise definition other than an example that removes as many variables and connectives as possible.
There are different measures with respect to which simplification can be defined. Here the answer has 2 connectives vs 4 in the original expression, so in this sense it is simpler. On the other hand, the number of atomic propositions is the same. Informally, for me it is a little easier to understand a >= 20 than NOT a < 20. Also, b > 10 AND b < 15 is often abbreviated as 10 < b < 15, which makes it even simpler.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 11 ·
Replies
11
Views
5K
  • · Replies 15 ·
Replies
15
Views
4K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 9 ·
Replies
9
Views
6K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K