MHB Simultaneous equations number problem

mathlearn
Messages
331
Reaction score
0
A certain numbers tenth place digit is $x$ & unit place digit is $1$. That number can be written as $(10x+y)$ . The sum of those two digits is 15 . When those two digits are flipped a number is made, That number less the first number results in 27.

What Have I done so far

$10x+y=15$
$(10y+x)-(10x+y)=27=9y-9x=27=y-x=3$

$y-x=3$
$10x+y=15$

Now solving the two simultaneous equations by subtraction,

11x=12

Now by substituting the thing in 1 I get y=5

Now the digit is 501-105=27 which is incorrect

Where have I done wrong ?

Many Thanks :)
 
Mathematics news on Phys.org
I'm guessing you mean to say the tens digint is $x$ and the unit digit is $y$ such that the number is:

$$10x+y$$

We are told:

$$x+y=15$$ (this is where you went wrong...you just want to add the digits here)

and

$$(10y+x)-(10x+y)=27$$ which simplifies to:

$$y-x=3$$

Can you proceed?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
24
Views
2K
Replies
5
Views
1K
Replies
11
Views
3K
Replies
3
Views
2K
Replies
4
Views
11K
Replies
5
Views
3K
Replies
1
Views
2K
Replies
3
Views
2K
Back
Top