A Simultanious eigenstate of Hubbard Hamiltonian and Spin operator in tw

2
0
Summary
Hubbard Hamiltonian seems not to commute to S^2 operator. help
Please see this page and give me an advice.


Known fact

1. If two operators ##A## and ##B## commute, ##[A,B]=0##, they have simultaneous eigenstates. That means ##A|a,b\rangle=a|a,b\rangle## and ##B|a,b\rangle=b|a,b\rangle##.
2. Hubbard Hamiltonian ##H_\text{hub}## is symmetric w.r.t. SU(2) spin operators. Thus ##[H,S^z]=[H,\vec{S}^2]=0##.

##\Rightarrow## Thus, eigenstates of ##H_\text{hub}## are also eigenstates of ##\vec{S}^2##.

To verify the above conclusion, I set a two-site Hubbard model with one ##\uparrow## and one ##\downarrow## fermions.
$$H=-t\sum_{\sigma=\uparrow,\downarrow}(c^\dagger_{1\sigma}c_{2\sigma}+h.c.)+U\sum_{i=1,2}(n_{i\uparrow} n_{i,\downarrow})$$
Without interaction, the ground state of the Hamiltonian is given by
$$|g\rangle=\frac{1}{2}(|\uparrow\downarrow ,0\rangle+|\uparrow,\downarrow\rangle+|\downarrow,\uparrow\rangle+|0,\uparrow\downarrow\rangle)$$
The total spin operator ##\vec{S}^2## is written in fermionic operator as
$$\vec{S}^2=\frac{1}{2}(S^+ S^- + S^- S^+)+(S^z)^2\\=\sum_{i=1,2}\sum_{j=1,2}[\frac{1}{2}(S_i^+ S_j^- + S_i^- S_j^+)+S_i^z S_j^z]$$
where each local operators are
$$
S^+_i=c^\dagger_{i,\uparrow} c_{i,\downarrow}\\
S^-_i=c^\dagger_{i,\downarrow} c_{i,\uparrow}\\
S^z_i=\frac{1}{2}(c^\dagger_{i,\uparrow} c_{i,\uparrow}-c^\dagger_{i,\downarrow} c_{i,\downarrow})
$$
Since ##|g\rangle## is an eigenstate of ##H##, so it must be an eigenstate of ##\vec{S}^2##. However, for each basis, we have
$$\vec{S}^2|\uparrow\downarrow,0\rangle=0\\
\vec{S}^2|\uparrow,\downarrow\rangle=|\uparrow,\downarrow\rangle+|\downarrow,\uparrow\rangle\\
\vec{S}^2|\downarrow,\uparrow\rangle=|\uparrow,\downarrow\rangle+|\downarrow,\uparrow\rangle\\
\vec{S}^2|0,\uparrow\downarrow\rangle=0$$
Thus we have
$$\vec{S}^2|g\rangle=|\uparrow,\downarrow\rangle+|\downarrow,\uparrow\rangle\\
\neq j(j+1)|g\rangle
$$

Where does the contradiction come from?

<Moderator's note: use ## ## to enclose inlined equations, not $ $.>
 
Last edited by a moderator:

DrClaude

Mentor
6,973
3,148
##\Rightarrow## Thus, eigenstates of ##H_\text{hub}## are also eigenstates of ##\vec{S}^2##.
That is incorrect. Commutating operators have a common basis of eigenstates, but that does not mean that any eigenstate of one operator is also an eigenstate of the other. In the case of degenerate eigenstates of one operator, there might be only certain linear combinations of these eigenstates that will result in eigenstates of the other operator. This appears to be what you have here.
 
2
0
In the case of degenerate eigenstates of one operator, there might be only certain linear combinations of these eigenstates that will result in eigenstates of the other operator.
Thank you for your explanation. However, the ground state of the Hubbard model is non-degenerated. Thus, it is not the case you mentioned. Thus I still guess that ##|g\rangle## must be an eigenstate of ##\vec{S}^2## still. Is there are another error in my logic?
 
Last edited:

Want to reply to this thread?

"Simultanious eigenstate of Hubbard Hamiltonian and Spin operator in tw" You must log in or register to reply here.

Related Threads for: Simultanious eigenstate of Hubbard Hamiltonian and Spin operator in tw

Replies
2
Views
487
  • Posted
Replies
3
Views
7K
Replies
7
Views
1K
Replies
5
Views
674
  • Posted
Replies
2
Views
1K
  • Posted
Replies
9
Views
1K
Replies
3
Views
1K

Physics Forums Values

We Value Quality
• Topics based on mainstream science
• Proper English grammar and spelling
We Value Civility
• Positive and compassionate attitudes
• Patience while debating
We Value Productivity
• Disciplined to remain on-topic
• Recognition of own weaknesses
• Solo and co-op problem solving

Hot Threads

Top