Single Slit Interference Pattern: Increased Distance

AI Thread Summary
Increasing the distance between the single slit and the screen results in wider bright fringes and decreased light intensity, making them appear closer together. This phenomenon occurs because the spreading of light reduces the distinction between dark fringes. The discussion raises questions about whether dark fringes actually decrease in size or if this is merely a perceptual effect. Key quantities relevant to this analysis include the wavelength of light and the distance from the slit to the screen. Understanding these factors is essential for accurately describing the interference pattern.
belbin09
Messages
1
Reaction score
0
Homework Statement
A laser emitting light with a wavelength of 560 nm is directed at a single slit, producing an interference pattern on a screen that is 3.0 m away. The central maximum is 5.0 cm wide.

What would the effect on this pattern be, if the screen was moved further away?
Relevant Equations
Δy = λL/w
ATTEMPT AT SOLUTION

The effect on the pattern when the screen is moved further away is the bright fringes would become wider, the light intensity of the bright fringes would decrease, and the bright fringes will appear closer together.

REASONING

I answered this question based on how light works against a screen in general. The part I get stuck on is how the dark fringes would appear. I state that the bright fringes "appear" closer together because as the distance between the slit and the screen increases the bright fringes would become wider, spreading the light outwards making the dark fringes harder to distinguish. Would the dark fringes actually get smaller or is it just a perception?
 

Attachments

  • Screen Shot 2022-06-03 at 7.57.50 PM.png
    Screen Shot 2022-06-03 at 7.57.50 PM.png
    10 KB · Views: 130
Physics news on Phys.org
What expressions do you know about where the bright and dark fringes appear? What quantities are relevant? Start from there.
 
Thread 'Minimum mass of a block'
Here we know that if block B is going to move up or just be at the verge of moving up ##Mg \sin \theta ## will act downwards and maximum static friction will act downwards ## \mu Mg \cos \theta ## Now what im confused by is how will we know " how quickly" block B reaches its maximum static friction value without any numbers, the suggested solution says that when block A is at its maximum extension, then block B will start to move up but with a certain set of values couldn't block A reach...
TL;DR Summary: Find Electric field due to charges between 2 parallel infinite planes using Gauss law at any point Here's the diagram. We have a uniform p (rho) density of charges between 2 infinite planes in the cartesian coordinates system. I used a cube of thickness a that spans from z=-a/2 to z=a/2 as a Gaussian surface, each side of the cube has area A. I know that the field depends only on z since there is translational invariance in x and y directions because the planes are...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...
Back
Top