SM:Parastatistics, grand canonical ensemble function

Click For Summary
SUMMARY

This discussion focuses on the grand canonical ensemble function, specifically addressing the calculations of average particle numbers and using the partition function Z. The user demonstrates the relationship between and through equations involving the logarithm of Z and the derivative with respect to chemical potential μ. Key insights include the necessity of convergence for the summation over single particle states r and the distinction between fermionic and bosonic distributions, particularly in handling infinite summations.

PREREQUISITES
  • Understanding of grand canonical ensemble statistical mechanics
  • Familiarity with partition functions and their properties
  • Knowledge of convergence criteria for infinite series
  • Basic concepts of fermionic and bosonic distributions
NEXT STEPS
  • Study the derivation of the grand canonical partition function Z in detail
  • Learn about convergence tests for infinite series in statistical mechanics
  • Explore the differences between fermionic and bosonic statistics in depth
  • Investigate the implications of the chemical potential μ on particle distributions
USEFUL FOR

Students and researchers in statistical mechanics, physicists working with quantum gases, and anyone interested in the mathematical foundations of particle distributions in thermodynamic systems.

binbagsss
Messages
1,291
Reaction score
12

Homework Statement


Hi
I am looking at the question attached.

parastatistics.jpg


Parts c and d, see below

Homework Equations

The Attempt at a Solution

First of all showing that ##<N> ## and ##<n_r>## agree

I have ##Z=\Pi_r z_r ##, where ##Z## here denotes the grand canonical ensemble.
So therefore we have ## \log(Z) = \sum\limits_r log (z) ## and since ##<N>=\frac{1}{\beta}\frac{\partial}{\partial \mu} \log Z ## the calculation seems pretty trivial unless there are some subtleties I am missing. The only subtlety I can think of however is the requirement of convergence such that the derivative can be taken inside the summation and then the derivative of the summation= sum of the derivative of each term, please see below.

So I have:
##z_r= \sum\limits_{n_r=0}^{n_r=p} x_r^{n_r } ##
so ## <n_r> =\frac{1}{\beta}\frac{\partial}{\partial \mu} \log ( \sum\limits_{n_r=0}^{n_r=p} x_r^{n_r } ) = \frac{1}{\beta} \frac{\sum\limits_{n_r=0}^{n_r=p} n_r \beta x_r^{n_r }}{\sum\limits_{n_r=0}^{n_r=p} x_r^{n_r } } ## (1)

And

##<N>= \frac{1}{\beta}\frac{\partial}{\partial \mu} \sum\limits_r \log ( \sum\limits_{n_r=0}^{n_r=p} x_r^{n_r } ) = \frac{1}{\beta} \sum\limits_r \frac{\partial}{\partial \mu} \log ( \sum\limits_{n_r=0}^{n_r=p} x_r^{n_r } ) = \frac{1}{\beta} \sum\limits_r \frac{\sum\limits_{n_r=0}^{n_r=p} n_r \beta x_r^{n_r }}{\sum\limits_{n_r=0}^{n_r=p} x_r^{n_r } } ## (2)

Where the 2nd equality has assumed convergence over the summation ## \sum\limits_r ##.

QUESTION 1- 2ND EQUALITY USING CONVERGENCE
So the question asks to use (1) and ## <N>= \sum\limits_r <n_r> ## to show that (2) is consistent with the latter. It is clear that the two agree. HOWEVER, I am unsure how to justify convergence over the summation of ##r##. Here ##r## is a single particle state, as far as I'm aware, (although most likely physically unlikely) this can be infinite, an ##n_r ## is the number of particles occupying a single ## r ## state. And so the summation over ##r## is infinite. If I ##E_r > \mu ## then this is an infinite summation of the logarithm of a summation which I know converges...but I don't think this really helps me out? (since i have ## \sum\limits_r \log (\sum\limits_{n_r} x_r^{n_r }) ## where ##x_r = \exp^{-\beta(E_r-\mu)}##).

QUESTION 2- UNABLE TO USE GENERAL EXPRESSION TO RECOVER BOSON DISTRUBUTION
so for fermions ##p=1## for bosons ##p=\infty##.
Looking at (1), the numerator multiplies ##n_r ## (dropped down from the exponentiial derivative) and so clearly when ##n_r=\infty ## this expression is dodgy/invalid- I am unsure what is wrong, however, with my above working.
The best I can seem to do is to recover the boson distribution from the expression at an earlier step, more generalised, which was:

## \frac{1}{\beta} \frac{\partial}{\partial \mu}( \log (\frac{1}{1-x_r})) ## it its easy to show that I attain ## \frac{1}{x_r^{-1}-1} ## as expected. (where I have use infinite summation formula for this and the assumption ## E_r > \mu ##
However I imagine the question wants you to be verifying your final, simplified expression. I am unsure what is wrong with (1)...the fermion distribution recovery is ok:
## <n_r> = \frac{1}{\beta} \frac{\sum\limits_{n_r=0}^{n_r=1} n_r \beta x_r^{n_r }}{\sum\limits_{n_r=0}^{n_r=1} x_r^{n_r } } ##
this gives:
## \frac{1}{\beta}( 0 + \frac{\beta x_r}{1+x_r} )= \frac{1}{x_r^{-1}+1}## as expected.

Many thanks in advance
 

Attachments

  • parastatistics.jpg
    parastatistics.jpg
    40.1 KB · Views: 760
Physics news on Phys.org
I can't say for sure, but I suspect that for part (b) you are expected to evaluate the sum in ##z_r= \sum\limits_{n_r=0}^{n_r=p} x_r^{n_r } ## and get a fairly simple result for ##z_r## in terms of ##x_r## and ##p##. Then you can use this in later parts of the problem.
 
Last edited:

Similar threads

  • · Replies 1 ·
Replies
1
Views
3K
Replies
4
Views
732
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 21 ·
Replies
21
Views
4K
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K