B So, a black hole and an antimatter star bump into each other....

AI Thread Summary
In a hypothetical scenario where a black hole of about 10 solar masses collides with a rogue antimatter star of the same mass, the black hole would likely absorb the star without any significant external effects. The antimatter would not annihilate the black hole; instead, the products of annihilation would not escape the event horizon. The collision would be similar to that of a normal matter star, with the black hole remaining intact and potentially gaining mass from the annihilation products. The energy released would manifest as electromagnetic radiation, but it would not change the black hole's external appearance. Ultimately, the interaction would not alter the black hole's status in the universe.
smplcrtrs
Messages
4
Reaction score
3
TL;DR Summary
Black hole meets pure antimatter star, hypothetically obviously. What happens?
This is a bit hypothetical obviously as I doubt the conditions for this scenario would ever occur in the real universe.

Imagine a black hole, about 10 solar masses. It is, amazingly, sitting in an area of space that is a perfect vacuum.
Just by chance, a rogue antimatter star of exactly the mass slams into the black hole at one of its poles. There's no time for them to orbit around each other in a death waltz. Just a head-on collision.

I'm guessing the black hole is much smaller than the antimatter star, so would end up in the core very quickly. Bearing in mind there is no matter present outside the event horizon, and the star hits the black hole at one of its poles (so the ergosphere would be minimal), would the black hole be annihilated by the antimatter? If so, would the photons, neutrinos and whatever other particles are formed be able to escape the event horizon?

I was wondering whether the black hole would remain, with its mass made up entirely of the products of annihilation, sort of a photon / neutrino black hole. Or would the low mass of these particles (and the weak interaction of neutrinos) mean that the black hole would disappear in a huge nova?

I'm not a physicist, so be gentle with me. :)
 
Astronomy news on Phys.org
The star ends up inside the now-larger black hole. There's some messy stuff in between and some bits of the star might escape, but it's not fundamentally different from a normal matter star colliding with a black hole. The black hole is largely vacuum (in fact, entirely vacuum plus a singularity in simple models) so there's nothing to care about what's getting swallowed.
 
Last edited:
  • Like
Likes collinsmark, russ_watters and smplcrtrs
Brilliant - thank you!
 
1640009346132.png

SCNR. :)
 
  • Haha
  • Like
  • Love
Likes PeroK, BillTre, CalcNerd and 5 others
Even if you assume the antimatter crosses the event horizon, bumps into some regular matter and they annihilate... doesn't matter (no pun intended) : ##E=mc^2## is an equal opportunity equation : one pound of matter plus one pound of antimatter equals two pounds of energy.
 
More precisely, it would mean a lot of EM radiation with a collective mass of two pounds which still can't escape from inside the black hole. So you'd see no change externally.
 
TL;DR Summary: In 3 years, the Square Kilometre Array (SKA) telescope (or rather, a system of telescopes) should be put into operation. In case of failure to detect alien signals, it will further expand the radius of the so-called silence (or rather, radio silence) of the Universe. Is there any sense in this or is blissful ignorance better? In 3 years, the Square Kilometre Array (SKA) telescope (or rather, a system of telescopes) should be put into operation. In case of failure to detect...
Thread 'Could gamma-ray bursts have an intragalactic origin?'
This is indirectly evidenced by a map of the distribution of gamma-ray bursts in the night sky, made in the form of an elongated globe. And also the weakening of gamma radiation by the disk and the center of the Milky Way, which leads to anisotropy in the possibilities of observing gamma-ray bursts. My line of reasoning is as follows: 1. Gamma radiation should be absorbed to some extent by dust and other components of the interstellar medium. As a result, with an extragalactic origin, fewer...
This thread is dedicated to the beauty and awesomeness of our Universe. If you feel like it, please share video clips and photos (or nice animations) of space and objects in space in this thread. Your posts, clips and photos may by all means include scientific information; that does not make it less beautiful to me (n.b. the posts must of course comply with the PF guidelines, i.e. regarding science, only mainstream science is allowed, fringe/pseudoscience is not allowed). n.b. I start this...
Back
Top