MHB So V is not vector over field \Bbb{R}

  • Thread starter Thread starter Another1
  • Start date Start date
  • Tags Tags
    Field Vector
Another1
Messages
39
Reaction score
0
I don't understand, please ckeck

$$Let$$ $$V=\Bbb{R}^2$$ and $${u=(u_1,u_2), v=(v_1.v_2)}\in\Bbb{R}^2$$ , $${k}\in \Bbb{R}$$ define of operation $$u\oplus v = (u_1+v_1,u_2+v_2)$$ and $$k \odot u =(2ku_1,2ku_2)$$ check V is vector over field $$\Bbb{R}$$ ?
________________________________________________________________
I think
in a property of the additive inverse $$(-u)+u=0=u+(-u)$$

from define $$k \odot u =(2ku_1,2ku_2)$$
So $$(-1)u = (-1) \odot u =(2(-1)u_1,2(-1)u_2) = (-2u_1,-2u_2) $$
$$(-u)+u = (-2u_1,-2u_2) + (u_1,u_2)\ne 0$$
 
Physics news on Phys.org
Hi Another.

In a vector space $V$ over a field $F$, we need to have for every $v\in V$ that
$$1_F\cdot v\ =\ v$$
where $1_F$ is the multiplicative identity in $F$. Is this condition satisfied for the scalar multiplication $\odot$ in this problem? In other words, is
$$1\odot u\ =\ u$$
true for all $u\in\mathbb R^2$?
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top