MHB Solution of the recurrence relation

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

How can we solve the following recurrence relation?

$$f_n=\left (\frac{2}{a^2}+b\right )f_{n-1}-\frac{1}{a^4}f_{n-2} \\ f_0=1, f_{-1}=0$$

I calculated some values to see if there is a general pattern, but it doesn't seems so...

$$f_1=\left (\frac{2}{a^2}+b\right ) \\ f_2 =\left (\frac{2}{a^2}+b\right )^2-\frac{1}{a^4} \\ f_3 =\left (\frac{2}{a^2}+b\right )^3-\frac{2}{a^4}\left (\frac{2}{a^2}+b\right ) \\ f_4=\left (\frac{2}{a^2}+b\right )^4-\frac{3}{a^4}\left (\frac{2}{a^2}+b\right ) ^2+\frac{1}{a^8} \\ f_5=\left (\frac{2}{a^2}+b\right )^5-\frac{4}{a^4}\left (\frac{2}{a^2}+b\right ) ^3+\frac{3}{a^8}\left (\frac{2}{a^2}+b\right )$$

Have calculated these values right?

Is there an other way to find the solution of the recurrence relation? (Wondering)
 
Physics news on Phys.org
mathmari said:
Hey! :o

How can we solve the following recurrence relation?

$$f_n=\left (\frac{2}{a^2}+b\right )f_{n-1}-\frac{1}{a^4}f_{n-2} \\ f_0=1, f_{-1}=0$$

I calculated some values to see if there is a general pattern, but it doesn't seems so...

$$f_1=\left (\frac{2}{a^2}+b\right ) \\ f_2 =\left (\frac{2}{a^2}+b\right )^2-\frac{1}{a^4} \\ f_3 =\left (\frac{2}{a^2}+b\right )^3-\frac{2}{a^4}\left (\frac{2}{a^2}+b\right ) \\ f_4=\left (\frac{2}{a^2}+b\right )^4-\frac{3}{a^4}\left (\frac{2}{a^2}+b\right ) ^2+\frac{1}{a^8} \\ f_5=\left (\frac{2}{a^2}+b\right )^5-\frac{4}{a^4}\left (\frac{2}{a^2}+b\right ) ^3+\frac{3}{a^8}\left (\frac{2}{a^2}+b\right )$$

Have calculated these values right?

Is there an other way to find the solution of the recurrence relation? (Wondering)
Start with:
[math]f_n = c f_{n-1} + d f_{n-2}[/math]

[math]f_{n + 2} - c f_{n + 1} - d f_n = 0[/math]

The characteristic equation is [math]m^2 - cm - d = 0[/math]

Can you take it from here?

-Dan
 
I did it! Thanks for the hint! (flower)
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.
Back
Top